ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Lead-210 in the atmospheric air of North and South Estonia: long-term monitoring and back-trajectory calculations; pp. 442–451

Full article in PDF format | doi: 10.3176/proc.2016.4.11

Authors
Kadri Isakar, Madis Kiisk, Enn Realo, Siiri Suursoo

Abstract

As the first study of long-term atmospheric 210Pb in Estonia, the activity concentration and possible origins of the nuclide were monitored at Tõravere, South Estonia, and Narva-Jõesuu, North-East Estonia, from 2001 to 2008. Activities of 210Pb in weekly collected air filter samples were analysed using HPGe gamma spectrometry. Results show high weekly, seasonal, and yearly variability in the range from 0.12 mBq m‒3 to 2.76 mBq m‒3 (median 0.45 mBq m‒3) for Tõravere and from 0.08 mBq m‒3 to 2.53 mB m‒3 (median 0.43 mBq m‒3) for Narva-Jõesuu. No significant correlation between the 210Pb activity concentration and meteorological data was found as far as total weekly precipitation, relative humidity, or air temperature were considered. A strong correlation between the 210Pb concentrations from the two sampling sites was present. Back-trajectory calculations made with the METEX software showed clearly that high 210Pb values in surface air were prevailingly caused by continental air masses from the Eurasian continent, while the low activity concentrations tended to arrive via marine air masses from the North Atlantic. Indications of correlation of atmospheric boundary layer height with 210Pb activity concentration were found.


References

Abe, T., Kosako, T., and Komura, K. 2010. Relationship between variations of 7Be, 210Pb and 212Pb concentrations and sub-regional atmospheric transport: simultaneous observation at distant locations. J. Environ. Radioact., 101, 113–121.
https://doi.org/10.1016/j.jenvrad.2009.09.004

Arimoto, R., Snow, J., and Graustein, W. 1999. Influences of atmospheric transport pathways on radionuclide activities in aerosol particles from over the North Atlantic. J. Geophys. Res., 104, 21301–21316.
https://doi.org/10.1029/1999JD900356

Baskaran, M. 2011. Po-210 and Pb-210 as atmospheric tracers and global atmospheric Pb-210 fallout: a review. J. Environ. Radioact., 102, 500–513.
https://doi.org/10.1016/j.jenvrad.2011.09.010
https://doi.org/10.1016/j.jenvrad.2010.10.007

Cannizzaro, F., Greco, G., and Raneli, M. 1999. Determination of 210Pb concentration in the air at ground-level by gamma-ray spectrometry. Appl. Radiat. Isot., 51, 239–245.
https://doi.org/10.1016/S0969-8043(98)00177-8

Dueñas, C., Fernández, M. C., Carretero, J., Liger, E., and Cañete, S. 2004. Long-term variation of the concen­trations of long-lived Rn descendants and cosmogenic 7Be and determination of the MRT of aerosols. Atmos. Environ., 38, 1291–1301.
https://doi.org/10.1016/j.atmosenv.2003.11.029

Field, A., Miles., J., and Field, Z. 2012. Discovering Statistics Using R. Sage, London.

Fredricks, G. A. and Nelsen, R. B. 2004. On the relationship between Spearman’s rho and Kendall’s tau for pairs of continuous random variables. J. Stat. Plan. Inference, 137, 2143–2150.
https://doi.org/10.1016/j.jspi.2006.06.045

Gaffney, J. and Marley, N. 2002. Using natural 210Pb and its daughters (210Bi and 210Po) to estimate aerosol residence times. In Proceedings of the DOE. Argonne National Laboratory, Argonne.

Gaffney, J., Marley, N., and Cunningham, M. 2004. Natural radionuclides in fine aerosols in the Pittsburgh area. Atmos. Environ., 38, 3191–3200.
https://doi.org/10.1016/j.atmosenv.2004.03.015

García-Talavera, M. and Peña, V. 2004. A hybrid method to compute accurate efficiencies for volume samples in gamma-ray spectrometry. Appl. Radiat. Isot., 60, 227–232.
https://doi.org/10.1016/j.apradiso.2003.11.022

GE Healthcare. 2013. Quality Matters. Whatman Filters for Air Monitoring. Thermo Fisher Scientific Inc., Waltham.

Ioannidou, A., Manolopoulou, M., and Papastefanou, C. 2005. Temporal changes of 7Be and 210Pb concentrations in surface air at temperate latitudes 40 degrees N. Appl. Radiat. Isot., 63, 277–284.
https://doi.org/10.1016/j.apradiso.2005.03.010

Isakar, K., Realo, K., Kiisk, M., and Realo, E. 2007. Efficiency corrections in low-energy gamma spectrometry. Nucl. Instrum. Methods Phys. Res., 580, 90–93.
https://doi.org/10.1016/j.nima.2007.05.044

Kowalski, C. J. 1972. On the effects of non-normality on the distribution of the sample product–moment correlation coefficient. J. R. Stat. Soc., 21, 1–12.
https://doi.org/10.2307/2346598

LNHB. 2008. Atomic & Nuclear Data. CEA, Saclay.

López-de-Lacalle, J. 2006. The R-computing language: potential for Asian economists. J. Asian Econom., 17, 1066–1081.
https://doi.org/10.1016/j.asieco.2006.09.010

Newson, R. 2002. Parameters behind “nonparametric” statistics: Kendall’s tau, Somers’ D and median differences. Stata J., 2, 45–64.

Paatero, J., Hatakka, J., Mattsson, R., and Viisanen, Y. 1998. Analysis of daily 210Pb air concentrations in Finland, 1967–1996. Radiat. Prot. Dosimetry, 77, 191–198.
https://doi.org/10.1093/oxfordjournals.rpd.a032310

Paatero, J., Hatakka, J., and Viisanen, Y. 2001. Trajectory analysis of 210Pb and 7Be in ground-level air in southern Finland. Radiochemistry, 43, 475–481.
https://doi.org/10.1023/A:1013069206962

Paatero, J., Buyukay, M., Holmén, K., Hatakka, J., and Viisanen, Y. 2010. Seasonal variation and source areas of airborne lead-210 at Ny-Ålesund in the High Arctic. Polar Res., 29, 345–352.
https://doi.org/10.3402/polar.v29i3.6085
https://doi.org/10.1111/j.1751-8369.2010.00185.x

Preiss, N., Mélières, M., and Pourchet, M. 1996. A compilation of data on lead-210 concentration in surface air and fluxes at the air–surface and water–sediment interfaces. J. Geophys. Res., 101, 28847–28862.
https://doi.org/10.1029/96JD01836

Realo, E., Realo, K., and Jõgi, J. 1996. Releases of natural radionuclides from oil-shale-fired power plants in Estonia. J. Environ. Radioact., 33, 77–89.
https://doi.org/10.1016/0265-931X(95)00088-R

Realo, K., Isakar, K., Lust, M., and Realo, E. 2007. Weekly variation of the 210Pb air concentration in North Estonia. Boreal Environ. Res., 12, 37–41.

Suzuki, T. and Shiono, H. 1995. Comparison of 210Po/210Pb activity ratio between aerosol and deposition in the atmospheric boundary layer over the west coast of Japan. Geochem. J. Japan, 29, 287–291.
https://doi.org/10.2343/geochemj.29.287

Sykora, I., Meresova, J., and Jeskovsky, M. 2007. Radioactivity of the atmospheric aerosol in Bratislava. In AIP Conf. Proc., 958, 228.
https://doi.org/10.1063/1.2825790

Todorovic, D., Popovic, D., Djuric, G., and Radenkovic, M. 2000. Pb in ground-level air in Belgrade city area. Atmos. Environ., 34, 3245–3248.
https://doi.org/10.1016/S1352-2310(99)00500-2

Vaasma, T., Kiisk, M., Meriste, T., and Tkaczyk, A. H. 2014a. The enrichment of natural radionuclides in oil shale-fired power plants in Estonia – the impact of new circulating fluidized bed technology. J. Environ. Radioact., 129, 133–139.
https://doi.org/10.1016/j.jenvrad.2014.01.002

Vaasma, T., Kiisk, M., Meriste, T., and Tkaczyk, A. H. 2014b. The enrichment behavior of natural radionuclides in pulverized oil shale-fired power plants. J. Environ. Radioact., 138, 427–433.
https://doi.org/10.1016/j.jenvrad.2014.02.027

Vecchi, R., Marcazzan, G., and Valli, G. 2005. Seasonal variation of 210Pb activity concentration in outdoor air of Milan (Italy). J. Environ. Radioact., 82, 251–266.
https://doi.org/10.1016/j.jenvrad.2004.12.008

Winkler, R. and Rosner, G. 2000. Seasonal and long-term variation of 210Pb concentration in air, atmospheric deposition rate and total deposition velocity in south Germany. Sci. Total Environ., 263, 57–68.
https://doi.org/10.1016/S0048-9697(00)00666-5

Zeng, J., Matsunaga, T., and Mukai, H. 2010. METEX – a flexible tool for air trajectory calculation. Environ. Model. Softw., 25, 607–608.
https://doi.org/10.1016/j.envsoft.2008.10.015


Back to Issue