eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

A parametric framework for the development of bioelectrical applications: application to a bio-impedance signal simulator; pp. 345–357

Full article in PDF format | doi: 10.3176/proc.2016.4.03

Yar Muhammad, Paul Annus, Yannick Le Moullec, Toomas Rang


Extracting useful information from cardiac signals for the diagnosis of diseases and judgement of heart functioning is of special interest to medical personnel. However, exploiting such signals is subject to the availability of the signals themselves and to possible measurement errors. We thus argue that modelling such signals offers several advantages as compared to relying on measured data only. By using a formalized representation, the parameters of the signal model can be manipulated and/or modified, thus providing mechanisms that allow researchers to reproduce and control such signals by means of e.g. simulators. To guide both the signal modelling and simulator development phases, we propose a new generic framework. We then illustrate how it can be used to guide the modelling of the impedance cardiography and impedance respirography signals. We also show how the proposed framework has been used to guide the development of the corresponding Bio-Impedance Signal Simulator (BISS). As a result, the implemented BISS generates simulated Electrical Bio-Impedance (EBI) signals and gives freedom to the end-user to control the essential properties of the generated EBI signals depending on their needs. Predefined states of human conditions/activities are also included for ease of use.


Abtahi, F., Gyllensten, I. C., Lindecrantz, K., and Seoane, F. 2012. Software tool for analysis of breathing-related errors in transthoracic electrical bioimpedance spectro­­scopy measurements. JPCS, 407, 012028. 84874095138&partnerID=tZOtx3y1 (accessed 2014-11-26).

Gargasas, L., Janusauskas, A., Lukosevicius, A., Vainoras, A., Ruseckas, R., Korsakas, S., and Miskinis, V. 2004. Development of methods for monitoring of electro­cardiograms, impedance cardiograms and seismo­cardiograms. Stud. Health Technol. Inform., 105, 131–141. (accessed 2014-11-26).

Heldt, T., Mukkamala, R., Moody, G. B., and Mark, R. G. 2010. CVSim: an open-source cardiovascular simulator for teaching and research. Open Pacing Electro­physiol. Ther. J., 3, 45–54. cvsim/45TOPETJ.pdf (accessed 2014-11-16).

Kersulyte, G., Navickas, Z., and Raudonis, V. 2009. Investigation of complexity of extraction accuracy modeling cardio signals in two ways. In Proceedings of the 5th IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS’2009), 21–23 September 2009, Rende, Italy, pp. 462–467. IEEE.

Krivoshei, A. 2006. A Bio-Impedance Signal Synthesiser (BISS) for testing of an adaptive filtering system. In 2006 International Biennial Baltic Electronics Conference, 2–4 October 2009, Tallinn, pp. 1–4. IEEE. (accessed 2014-11-13).

Krivošei, A. 2009. Model Based Method for Adaptive Decomposition of the Thoracic Bio-impedance Variations into Cardiac and Respiratory Components. PhD thesis.Tallinn University of Technology.

Malmivuo, J. and Plonsey, R. 1995. Bioelectromagnetism: Principles and Appications of Bioelectric and Biomagnetic Fields. Oxford University Press, New York.

Matušek, A., Provazník, I., and Fontecave-Jallon, J. 2012. Modelling of Impedance Cardiac Signals. MSc thesis. Faculty of Electrical Engineering and Communi­cations, Brno University of Czech Republic.

Mughal, Y. M. 2014. Decomposing of cardiac and respiratory signals from electrical bio-impedance data using filtering method. In The International Conference on Health Informatics (ICHI 2013), Vilamoura, Portugal, 7–9 November 2013 (Zhang, Y.-T., ed.), pp. 252–255. IFMBE Proceedings, Vol. 42. Springer International Publishing. (accessed 2014-11-12).

Mughal, Y. M. 2016. A Parametric Framework for Modelling of Bioelectrical Signals. Springer, Singapore. http:// 10.1007/978-981-287-969-1 (accessed 2016-06-20).

Mughal, Y. M., Krivoshei, A., and Annus, P. 2013. Separation of cardiac and respiratory components from the electrical bio-impedance signal using PCA and fast ICA. In International Conference on Control Engineering & Information Technology (CEIT’13), 4–7 June 2013, Sousse, Tunisia, pp. 153–156. // 1307.0915 (accessed 2014-11-12).

Mughal, Y. M., Annus, P., Min, M., and Gordon, R. 2014. An overview of the impedance models of the thorax and the origin of the impedance cardiography signal and modelling of the impedance signals. In 2014 IEEE Conference on Biomedical Engineering and Sciences (IECBES), 8–10 December, Kuala Lumpur, Malaysia, pp. 526–531. IEEE.

Mughal, Y. M., Moullec, Y. L., Annus, P., and. Krivoshei, A. 2015a. A bio-impedance signal simulator (BISS) for research and training purposes. In 26th Irish Signals and Systems Conference (ISSC 2015), Carlow, Ireland, 24–25 June 2015, 15324657. IEEE.

Mughal, Y. M., Moullec, Y. L., Annus, P., and Min., M. 2015b. Development of a bio-impedance signal simulator on the basis of the regression based model of the cardiac and respiratory impedance signals. In 16th Nordic-Baltic Conference on Biomedical Engineering, October 14–16, 2014, Gothenburg, Sweden (Mindedal, H. and Persson, M., eds.), pp. 92–95. IFMBE Proceedings, Vol. 48. 10.1007/978-3-319-12967-9 (accessed 2014-11-12).

Muhammad, Y. 2015. A Parametric Framework for Modelling of Bioelectrical Signals. PhD thesis. Tallinn University of Technology.

Solà, J., Adler, A. Santos, A., Tusman. G., Sipmann, F. S., and Bohm, S. H. 2011. Non-invasive monitoring of central blood pressure by electrical impedance tomography: first experimental evidence. Med. Biol. Eng. Comput., 49(4), 409–415. 21404079 (accessed 2014-11-20).

Timischl, S. 1998. A Global Model for the Cardiovascular and Respiratory System. PhD thesis. Karl-Franzens University of Graz. diss.pdf (accessed 2014-11-12).

Ulbrich, M., Jens, M., Walter, M., and Leonhardt, S. 2012. Simulation of lung edema in impedance cardiography. Computing in Cardiology, 39(1), 33–36.

Zurich Instruments. 2015. HF2IS Impedance Spectroscope. Zurich Instruments. hf2is (accessed 2016-02-12).

Back to Issue