ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Assemblage of turbulent jet flows through static particulate media; 284–296

Full article in PDF format | doi: 10.3176/proc.2016.3.05

Authors
Peep Lauk, Josep Hueso Rebassa, Aleksander Kartushinsky, Sergei Tisler, Toivo Tähemaa, Andrei Polonsky

Abstract

The work consists in numerical modelling of two-phase flow in porous media. The performance of a vertical cylinder pellets dryer with four lateral jets discharging air to a motionless particulate medium was modelled. The aim was to better understand the mechanism of heat exchange and the effect of different parameters on the fluid going through a particulate medium. The flow was considered non-isothermal and turbulent. The cases were first calculated for a single phase (isothermal and non-isothermal) and then for two phases with changing the particles volume fraction and size. The Boussinesq approach was used to take into account the effect of temperature on the gas velocity, and the kε model was applied for the closure of momentum equations. The solution algorithm was built using a scheme of finite differences with the tri-diagonal matrix algorithm. The results show how different variables, such as axial velocity or temperature of lateral jets flow, start with high values in the inlets and merge and collapse further downstream while the flow goes through the medium. The axial velocity drops from the jets up to the end of the system. This drop is higher for larger particles volume fractions. The radial velocity tends to increase from a null value faster for larger particles volume fractions. As the drag increases, the temperature drops faster for larger particles volume fractions and for bigger particles, which can be explained by the higher energy transfer between the flow and the particles.


References

  1. Noyes, R. T. Development of a new low-energy environ­mentally compatible grain and seed drying storage technology. In Proceedings of the 9th International Working Conference on Stored Product Protection, São Paulo. 2006, 1285–1294.

  2. Day, D. and Nelson, G. Predicting Performances of Cross-flow Systems for Drying Grain in Storage in Deep Cylindrical Bins. ASAE Paper No. 62-925. American Society of Agricultural Engineers, St. Joseph, Mich., USA, 1962.

  3. Navarro, S., Noyes, R., and Armitage, D. Supplemental aeration systems. The Mechanics and Physics of Modern Grain Aeration Management. CRC Press, Boca Raton, 2002, 417–424.

  4. Jayas, D. and Muir, W. Air flow pressure drop data for modelling fluid flow in anisotropic bulks. Trans­actions of the ASAE, 1991, 34(1), 251–254.
http://dx.doi.org/10.13031/2013.31654

  5. Jayas, D. and Mann, D. Presentation of airflow resistance data of seed bulks. Appl. Eng. Agric., 1994, 10(1), 79–83.
http://dx.doi.org/10.13031/2013.25831

  6. Narasimhan, A. Essentials of Heat and Fluid Flow in Porous Media. CRC Press, Taylor and Francis Group, India, 2012.

  7. Ljung, A., Lundström, T. S., and Tano, K. Simulation of heat transfer and fluid flow in a porous bed of iron ore pellets during up-draught drying. In Proceedings of the 5th International Conference on CFD in the Process Industries, Melbourne 2006. http://www.cfd.com.au/cfd_conf06/PDFs/108Lju.pdf (accessed 2015-11-09).

  8. Mitkov, I., Tartakovsky, D. M., and Winter, L. Dynamics of wetting fronts in porous media. Phys. Rev. E. J., 1998, 58, 5245–5248.
http://dx.doi.org/10.1103/PhysRevE.58.R5245

  9. Abramovich, G. Effect of admixture of solid particles or droplets on the structure of a turbulent gas jet. Int. J. Heat Mass Flow, 1971, 14, 1039–1045.
http://dx.doi.org/10.1016/0017-9310(71)90202-X

10. Gore, R. and Crowe, C. Effect of particle size on modulating turbulent intensity. Int. J. Multiphase Flow, 1989, 15, 279–285.
http://dx.doi.org/10.1016/0301-9322(89)90076-1

11. Yuan, Z. and Michaelides, E. Turbulence modulation in particulate flows, a theoretical approach. Int. J. Multiphase Flow, 1992, 18, 779–785.
http://dx.doi.org/10.1016/0301-9322(92)90045-I

12. Hetsroni, G. and Sokolov, M. Distribution of mass, velocity and intensity of turbulence in a two-phase turbulent jet. Trans. ASME J. Appl. Mech., 1971, 38, 315–327.
http://dx.doi.org/10.1115/1.3408779

13. Laats, M. and Frishman, F. Development of the method and research of turbulence intensity at two-phase jet axis. Izv. AN USSR, 1973, 2, 153–157 (in Russian).

14. Shraiber, A. A., Yatsenko, V. P., Gavin, L. B., and Naumov, V. A. Turbulent Flows in Gas Suspensions. Hemisphere, New York, 1990.

15. Frishman, F., Hussainov, M., Kartushinsky, A., and Mulgi, A. Numerical simulation of two-phase turbulent pipe-jet flow loaded polydispersed solid admixture. Int. J. Multiphase Flow, 1997, 23, 765–796.
http://dx.doi.org/10.1016/S0301-9322(97)00017-7

16. Almeida, T. and Jaberi, F. Large-eddy simulation of a dispersed particle-laden turbulent round jet. Int. J. Heat Mass Transfer, 2008, 51, 683–695.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.04.023

17. Kartushinsky, A., Michaelides, E., Rudi, Y., and Nathan, G. RANS modelling of a particulate turbulent round jet. J. Chem. Eng. Sci., 2010, 65, 3384–3393.
http://dx.doi.org/10.1016/j.ces.2010.02.037

18. Crowe, C. T. and Gillandt, I. Turbulence modulation of fluid–particle flows, basic approach. In Proceedings of the 3rd Int. Conference on Multiphase Flows, Lyon, 1998. CDROM.

19. Zaichik, L. and Alipchenkov, V. Statistical models for predicting particle dispersion and preferential concen­tration in turbulent flows. Int. J. Heat Fluid Flow, 2005, 26, 416–430.
http://dx.doi.org/10.1016/j.ijheatfluidflow.2004.10.001

20. Corrsin, S. Investigation of the behaviour of parallel, two-dimensional air jets. NACA, 1944, No. 4H24.

21. Marsters, G. Measurements in the flow field of a linear array of rectangular nozzles. J. Aircraft, 1979, 17, 774–780.
http://dx.doi.org/10.2514/3.57964

22. Yimer, I., Becker, H., and Grandmaison, E. Development of flow from multiple-jet burners. Can. J. Chem. Eng., 1996, 74, 840–851.
http://dx.doi.org/10.1002/cjce.5450740605

23. Böhm, B., Stein, O., Kempf, A., and Dreizler, A. In-nozzle measurements of a turbulent opposed jet using PIV. Flow Turbul. Combust., 2010, 85, 73–93.
http://dx.doi.org/10.1007/s10494-010-9257-4

24. Rieth, M., Proch, F., Stein, O., Pettit, M., and Kempf, A. Comparison of the sigma and Smagorinsky LES models for grid generated turbulence and a channel flow. J. Computers & Fluids, 2014, 99, 172–181.
http://dx.doi.org/10.1016/j.compfluid.2014.04.018

25. Schiller, L. and Naumann, A. Über die grundlegenden Berechnungen bei der Schwerkraftaufbereitung. Z. Vereines Deutscher Ingenieure, 1933, 77, 318–320.

26. Abramovich, G. 1963. The Theory of Turbulent Jets. The MIT Press Classics, Boston, 1963.

27. Ihme, M. and Pitsch, H. Effects of heat release on turbulent jet flows. In Proceedings of the 5th International Symposium on Turbulence and Shear Flow Phenomena, Munich. 2007.

28. Zhao-qin Yin, Hong-jun Zhang, and Jian-Zhong Lin. Experimental study on the flow field characteristics in the mixing region of twin jets. J. Hydrodyn., 2007, 19, 309–313.
http://dx.doi.org/10.1016/S1001-6058(07)60063-8


Back to Issue