ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Optimization of reinforcement content of powder metallurgy hardfacings in abrasive wear conditions; pp. 90–96

Full article in PDF format | doi: 10.3176/proc.2016.2.03

Authors
Taavi Simson, Priit Kulu, Andrei Surženkov, Riho Tarbe, Mart Viljus, Marek Tarraste, Dmitri Goljandin

Abstract

The article studies the effect of the hardmetal reinforcement content (80, 60, 40, and 20 wt%) on powder metallurgy (PM) hardfacings with the FeCrSiB matrix, produced by vacuum pressureless liquid-phase sintering. Research focus was on the microstructure, macro- and microhardness, as well as wear resistance of hardfacings under abrasive rubber wheel wear and abrasive–erosive wear tests. The results of the wear tests are compared to the wear of reference materials: steel Hardox 400, composite wear plate CDP 112 (Castolin Eutectic® Ltd.), and hardmetal VK15. A positive correlation was found between the microstructure and microhardness of the hardfacings and their wear resistance. Optimal hardmetal content in the PM hardfacings for different types of wear conditions is recommended.


References

  1. Wang, P. Z., Qu, J. X., and Shao, A. S. Cemented carbide reinforced nickel-based alloy coating by laser cladding and the wear characteristics. Mater. Design, 1996, 17(5), 289–296.
http://dx.doi.org/10.1016/S0261-3069(97)00025-3

  2. Smurov, J. Laser cladding and laser assisted direct manufacturing. Surf. Coat. Tech., 2008, 202(18), 4496–4502.
http://dx.doi.org/10.1016/j.surfcoat.2008.04.033

  3. Kulu, P. and Zimakov, S. Wear resistance of thermal sprayed coatings on the base of recycled hardmetal. Surf. Coat. Tech., 2000, 130(1), 46–51.
http://dx.doi.org/10.1016/S0257-8972(00)00687-3

  4. Kulu, P. and Halling, J. Recycled hard metal-base wear-resistant composite coatings. J. Therm. Spray Techn., 1998, 7(2), 173–178.
http://dx.doi.org/10.1361/105996398770350882

  5. Guo, C., Zhou, J., Chan, J., Zhow, J., Yu, Y., and Zhou, H. High temperature wear resistance of laser cladding NiCrBSi and NiCrBSi/WC-Ni composite coatings. Wear, 2011, 270(7–8), 492–498.
http://dx.doi.org/10.1016/j.wear.2011.01.003

  6. Kulu, P., Surzhenkov, A., Tarbe, R., Viljus, M., Saarna, M., and Tarraste, M. Hardfacings for abrasive wear applications. In Proceedings of the 28th International Conference on Surface Modification Technologies, Tampere, Finland, 16–18th of June, 2014. Valardocs, 2014, 149–157.

  7. Surzhenkov, A., Kulu, P., Tarbe, R., Mikli, V., Sarjas, H., and Latokartano, J. Wear resistance of laser remelted thermally sprayed coatings. Estonian J. Eng., 2009, 19, 318–328.
http://dx.doi.org/10.3176/eng.2009.4.09

  8. Sarjas, H., Goljandin, D., Kulu, P., Mikli, V., Surženkov, A., and Vuoristo, P. Wear resistant thermal sprayed composite coatings based on iron self-fluxing alloy and recycled cermet powders. Mater. Sci. (Medžiagotyra), 2012, 18(1), 34–39.
http://dx.doi.org/10.5755/j01.ms.18.1.1338

  9. Zikin, A., Ilo, S., Kulu, P., Hussainova, I., Katsich, C., and Badisch, C. Plasma transferred ARC (PTA) hardfacing of recycled hardmetal reinforced nickel-matrix surface composite. Mater. Sci. (Medžiagotyra), 2012, 18(1), 12–17.
http://dx.doi.org/10.5755/j01.ms.18.1.1334

10. Kulu, P., Käerdi, H., Surženkov, A., Tarbe, R., Veinthal, R., Goljandin, D., and Zikin, A. Recycled hardmetal-based powder composite coatings: optimisation of composition, structure and properties. Int. J. Mater. Prod. Tec., 2014, 49(2–5), 180–202.
http://dx.doi.org/10.1504/IJMPT.2014.064038

11. Paul, C. P., Alemohammad, H., Toyserkani, E., Khajepour, A., and Corbin, S. Cladding of WC-12Co on low carbon steel using a pulsed Nd:YAG laser. Mater. Sci. Eng., 2007, 464, 170–176.
http://dx.doi.org/10.1016/j.msea.2007.01.132

12. Afzal, M., Ajmal, M., Nusair Khan, A., Hussain, A., and Akhter, R. Surface modification of air plasma spraying WC-12%Co cermet coating by laser melting technique. Opt. Laser Technol., 2014, 56, 202–206.
http://dx.doi.org/10.1016/j.optlastec.2013.08.017

13. Wang, J., Meng, H., Yu, H., Fan, Z., and Sun, D. Surface hardening of Fe-based alloy powders by Nd:YAG laser cladding followed by electrospark deposition with WC-Co cemented carbide. Rare Metals, 2010, 29(4), 380–384.
http://dx.doi.org/10.1007/s12598-010-0134-z

14. Rojacz, H., Varga, M., Kerber, H., and Winkelmann, H. Processing and wear of cast MMCs with cemented carbide scrap. J. Mater. Process. Tech., 2011, 214, 1285–1292.
http://dx.doi.org/10.1016/j.jmatprotec.2014.01.011

15. Stepanchuk, A. N. Manufacturing of composite materials and coatings from self-fluxing alloys and hardmetal scrap. 2011. http://cla.kpi.ua/handle/123456789/5381 (accessed 28.05.2015).

16. Gu, D. and Shen, Y. Influence of reinforcement weight fraction on microstructure and properties of submicron WC-Co/Cu bulk MMCs prepared by direct laser sintering. J. Alloy Comp., 2007, 431(1–2), 112–120.
http://dx.doi.org/10.1016/j.jallcom.2006.05.044

17. Kulu, P., Tarbe, R., Zikin, A., Sarjas, H., and Surženkov, A. Abrasive wear resistance of recycled hardmetal reinforced thick coating. Key Eng. Mat., 2015, 527, 185–190.
http://dx.doi.org/10.4028/www.scientific.net/KEM.527.185

18. Kulu, P., Surženkov, A., Tarbe, R., and Simson, T. Abrasive impact wear resistance of hardfacings. In Proceedings of the European Conference on Heat Treatment 2015 & 22nd IFHTSE Congress, Venice, Italy, 20–22 May 2015. CD-ROM.


Back to Issue