eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Reconstruction of UVB and UVA radiation at Tõravere, Estonia, for the years 1955–2003; pp. 50–57
PDF | doi: 10.3176/proc.2016.1.05

Margit Aun, Kalju Eerme, Martin Aun, Ilmar Ansko

Information on UV radiation levels and their changes in the past improves opportunities to investigate negative and beneficial effects of radiation. A reconstruction of the daily doses of ground-level solar irradiance in ultraviolet wavelength bands UVB (280–315 nm) and UVA (315–400 nm) in the years 1955–2003 was made for the site of Tartu Observatory at Tõravere, Estonia (58°16’N, 26°28’E, 70 m a.s.l.). Freely available software ARESLab (based on Multivariate Adaptive Regression Splines, MARS) was used for radiation modelling. Measured daily column ozone values, daily dose of global solar radiation, noon solar zenith angle, and cloudless UV daily doses calculated with the libRadtran software packet were used as the input data. The construction of the models was based on the UV spectral irradiance data measured at Tõravere from 2004 to 2006 with a minispectrometer AvaSpec-256. The models were tested on a 200-day data set from the year 2007. The coefficients of linear correlation between the calculated and measured daily doses were 0.98 in both wavelength ranges. Testing was also carried out on the data from Bentham DMc150F-U to investigate the possibility of providing information for missing measurement days with model calculations in order to obtain longer time series and better opportunities for investigating short-term changes and shortperiod dependence between UV doses and various weather and atmospheric factors and ground ecosystems.


Ansko, I., Eerme, K., Lätt, S., Noorma, M., and Veismann, U. 2008. Study of suitability of AvaSpec array spectrometer for solar UV field measurements. Atmos. Chem. Phys., 8, 3247–3253.

Aun, M., Eerme, K., Ansko, I., Veismann, U., and Lätt, S. 2011. Modification of spectral ultraviolet doses by different types of overcast cloudiness and atmospheric aerosol. Photochem. Photobiol., 87, 461–469.

Bilbao, J., Roman, R., Miguel, A. de, and Mateos, D. 2011. Long-term solar erythemal UV irradiance data recon­struction in Spain using a semiempirical method. J. Geophys. Res.-Atmos., 116, D22211.

Cutforth, H. W. and Judiesch, D. 2007. Long-term changes to incoming solar energy on the Canadian Prairie. Agric. Forest Meteorol., 145, 167–175.

Diffey, B. L. 1977. The calculation of the spectral distribution of natural ultraviolet radiation under clear day conditions (for UV dosimeter correction). Phys. Med. Biol., 22, 309.

Eerme, K. 2012. Interannual and intraseasonal variations of the available solar radiation. In Solar Radiation (Babatunde, E. B., ed.), pp. 33–52. InTech, Croatia.

Eerme, K. and Aun, M. 2012. A review of the variations of optical remote sensing conditions over Estonia in 1958–2011. Int. J. Remote Sens. Appl., 2(3), 12–19.

Eerme, K., Veismann, U., and Koppel, R. 2002. Variations of erythemal ultraviolet irradiance and dose at Tartu/Tõravere, Estonia. Clim. Res., 22, 245–253.

Eerme, K., Veismann, U., and Lätt, S. 2006. Proxy-based recon­­struction of erythemal UV doses over Estonia for 1955–2004. Ann. Geophys., 24, 1767–1782.

Eerme, K., Kallis, A., Veismann, U., and Ansko, I. 2010. Long-term variations of available solar radiation on seasonal timescales in 1955–2006 at Tartu-Tõravere Meteorological Station, Estonia. Theor. Appl. Climatol., 101, 371–379.

Feister, U., Junk, J., Woldt, M., Bais, A., Helbig, A., Janouch, M., et al. 2008. Long-term solar UV radiation reconstructed by ANN modelling with emphasis on spatial characteristics of input data. Atmos. Chem. Phys., 8, 3107–3118.

Friedman, J. H. 1991. Multivariate adaptive regression splines. Ann. Stat., 19, 1–67.

Glasow, R. von, Bobrowski, N., and Kern, C. 2009. The effects of volcanic eruptions on atmospheric chemistry. Chem. Geol., 263, 131–142.

Haberreiter, M., Krivova, N. A., Schmutz, W., and Wenzler, T. 2005. Reconstruction of the solar UV irradiance back to 1974. Adv. Space Res., 35, 365–369.

Järvet, A. and Jaagus, J. 1996. The impact of climate change on hydrological regime and water resources in Estonia. In Estonia in the System of Global Climate Change (Punning, J.-M., ed.), pp. 84–103. Institute of Ecology, Tallinn.

Jekabsons, G. 2011. ARESLab, Adaptive Regression Splines toolbox for Matlab/Octave. jekabsons/regression.html (accessed 27.03.2015).

Junk, J., Feister, U., Helbig, A., Görgen, K., Rozanov, E., Krzyścin, J. W., and Hoffmann, L. 2012. The benefit of modeled ozone data for the reconstruction of a 99-year UV radiation time series. J. Geophys. Res.-Atmos., 117, D16102.

Kambezidis, H. D., Kaskaoutis, D. G., Kharol, S. K., Moorthy, K. K., Satheesh, S. K., Kalapureddy, M. C. R., et al. 2012. Multi-decadal variation of the net downward shortwave radiation over south Asia: the solar dimming effect. Atmos. Environ., 50, 360–372.

Kaurola, J., Taalas, P., Koskela, T., Borkowski, J., and Josefsson, W. 2000. Long-term variations of UV-B doses at three stations in northern Europe. J. Geophys. Res.-Atmos., 105, 20813–20820.

Krzyścin, J. W. 2003. Nonlinear (MARS) modeling of long-term variations of surface UV-B radiation as revealed from the analysis of Belsk, Poland data for the period 1976–2000. Ann. Geophys., 21, 1887–1896.

Krzyścin, J. W., Eerme, K., and Janouch, M. 2004. Long-term variations of the UV-B radiation over Central Europe as derived from the reconstructed UV time series. Ann. Geophys., 22, 1473–1485.

Lindfors, A. and Vuilleumier, L. 2005. Erythemal UV at Davos (Switzerland), 1926–2003, estimated using total ozone, sunshine duration, and snow depth. J. Geophys. Res.-Atmos., 110, 1–15.

Lindfors, A., Kaurola, J., Arola, A., Koskela, T., Lakkala, K., Josefsson, W., et al. 2007. A method for recon­struction of past UV radiation based on radiative transfer modeling: applied to four stations in northern Europe. J. Geophys. Res.-Atmos., 112, D23201.

London, J., Bojkov, R. D., Oltmans, S., and Kelley, J. I. 1976. Atlas of the Global Distribution of Total Ozone July 1957 - June 1967. National Center for Atmospheric Research, Boulder, Colorado.

Mayer, B. and Kylling, A. 2005. Technical note: The libRadtran software package for radiative transfer calculations – description and examples of use. Atmos. Chem. Phys., 5, 1855–1877.

Mayer, B., Seckmeyer, G., and Kylling, A. 1997. Systematic long-term comparison of spectral UV measurements and UVSPEC modeling results. J. Geophys. Res., 102, 8755–8767.

McMillan, T. J., Leatherman, E., Ridley, A., Shorrocks, J., Tobi, S. E., and Whiteside, J. R. 2008. Cellular effects of long wavelength UV light (UVA) in mammalian cells. J. Pharm. Pharmacol., 60, 969–976.

Medhaug, I., Olseth, J. A., and Reuder, J. 2009. UV radiation and skin cancer in Norway. J. Photochem. Photobiol. B, 96, 232–241.

Nõges, P., Jaagus, J., Järvet, A., Nõges, T., and Laas, A. 2012. Kliimamuutuse mõju veeökosüsteemidele ning põhjaveele Eestis ja sellest tulenevad veeseireprogrammi võimalikud arengusuunad. Estonian University of Life Sciences, Tartu (in Estonian).

Outer, P. N. den, Slaper, H., Kaurola, J., Lindfors, A., Kazantzidis, A., Bais, A. F., et al. 2010. Recon­structing of erythemal ultraviolet radiation levels in Europe for the past 4 decades. J. Geophys. Res.-Atmos., 115, D10102.

Rieder, H. E., Holawe, F., Simic, S., Blumthaler, M., Krzyścin, J. W., Wagner, J. E., et al. 2008. Recon­struction of erythemal UV-doses for two stations in Austria: a comparison between alpine and urban regions. Atmos. Chem. Phys., 8, 6309–6323.

Russak, V. 1996. Atmospheric aerosol variability in Estonia calculated from solar radiation measurements. Tellus A, 48, 786–791.

Russak, V., Kallis, A., Jõeveer, A., Ohvril, H., and Teral, H. 2007. Changes in the spectral aerosol optical thickness in Estonia (1951–2004). Proc. Estonian Acad. Sci. Biol. Ecol., 56, 69–76.

Schwander, H., Mayer, B., Ruggaber, A., Albold, A., Seckmeyer, G., and Koepke, P. 1999. Method to determine snow albedo values in the ultraviolet for radiative transfer modeling. Appl. Optics, 38, 3869–3875.

Stanhill, G. 2005. Global dimming: a new aspect of climate change. Weather, 60, 11–14.

Stohl, A., Berg, T., Burkhart, J. F., Fjæraa, A. M., Forster, C., Herber, A., et al. 2007. Arctic smoke – record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe in spring 2006. Atmos. Chem. Phys., 7, 511–534.

Wild, M., Gilgen, H., Roesch, A., Ohmura, A., Long, C. N., Dutton, E. G., et al. 2005. From dimming to brightening: decadal changes in solar radiation at Earth’s surface. Science, 308, 847–850.

WMO. 1991. Scientific Assessment of Ozone Depletion: 1991. Global Ozone Research and Monitoring Project – Report No. 25. Geneva, Switzerland.

WMO. 1995. Scientific Assessment of Ozone Depletion: 1994. Global Ozone Research and Monitoring Project – Report No. 37. Geneva, Switzerland.

Zerefos, C., Eleftheratos, K., Meleti, C., Kazadzis, S., Romanou, A., Ichoku, C., et al. 2009. Solar dimming and brightening over Thessaloniki, Greece, and Beijing, China. Tellus B, 61, 657–665.

Back to Issue