ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2021): 1.024
Wave motions along lattices with nonlinear on-site and inter-site potentials. Cooperation and/or competition leading to lattice solitons and/or discrete breathers; pp. 396–404
PDF | doi: 10.3176/proc.2015.3S.10

Authors
Manuel G. Velarde, Alexander P. Chetverikov, Werner Ebeling, Sergey V. Dmitriev, Victor D. Lakhno
Abstract

We consider the wave dynamics of a one-dimensional lattice where both on-site and inter-site vibrations, coupled together, are governed by Morse interactions. We focus attention on the onset of lattice solitons and discrete breathers (DBs, aka intrinsic localized modes, ILM). We show how varying the relative strength of the on-site potential to that of the inter-site potential permits transition from one mode of (travelling or otherwise) localized excitation to the other.

 

References

 

  1. Scott, A. C. Nonlinear Science. Emergence and Dynamics of Coherent Structures. Oxford University Press, New York, 1999.

  2. Dauxois, T. and Peyrard, M. Physics of Solitons. Cambridge University Press, Cambridge, 2006 (and references therein).

  3. Lakhno, V. D. and Fialko, N. S. Long-range charge transfer in DNA. Regul. Chaotic Dyn., 2002, 7(3), 299–313.
http://dx.doi.org/10.1070/RD2002v007n03ABEH000212

  4. Yakushevich, L. V. From pendulum to DNA. Biophysics, 2013, 58(3), 291–309.
http://dx.doi.org/10.1134/S0006350913030214

  5. Campbell, D. K., Flach, S., and Kivshar, Yu. S. Localizing energy through nonlinearity and discreteness. Phys. Today, 2004, 57(1), 43–49 (and references therein).
http://dx.doi.org/10.1063/1.1650069

  6. Sievers, A. J. and Takeno, S. Intrinsic localized modes in anharmonic crystals. Phys. Rev. Lett., 1988, 61(8), 970–973.
http://dx.doi.org/10.1103/PhysRevLett.61.970

  7. Kiselev, S. A., Bickham, S. R., and Sievers, A. J. Anharmonic gap modes in a perfect one-dimensional diatomic lattice for standard two-body nearest-neighbor potentials. Phys. Rev. B, 1993, 48(18), 13508–13511.
http://dx.doi.org/10.1103/PhysRevB.48.13508

  8. Page, J. B. Asymptotic solutions for localized vibratonial modes in strongly anharmonic periodic systems. Phys. Rev. B, 1990, 41(11), 7835–7838.
http://dx.doi.org/10.1103/PhysRevB.41.7835

  9. Tsironis, G. P. If “discrete breathers” is the answer, what is the question? Chaos, 2003, 13(2), 657–666.
http://dx.doi.org/10.1063/1.1557234

10. Sanchez-Rey, B., James, G., Cuevas, J., and Archilla, J. F. R. Bright and dark breathers in Fermi-Pasta-Ulam lattices. Phys. Rev. B, 2004, 70(1), 014301.
http://dx.doi.org/10.1103/PhysRevB.70.014301

11. Iooss, G. and James, G. Localized waves in nonlinear oscillator chains. Chaos, 2005, 15(1), 015113.
http://dx.doi.org/10.1063/1.1836151

12. Aubry, S. Discrete breathers: localization and transfer of energy in discrete Hamiltonian nonlinear systems. Physica D, 2006, 216(1), 1–30.
http://dx.doi.org/10.1016/j.physd.2005.12.020

13. Chechin, G. M., Dmitriev, S. V., Lobzenko, I. P., and Ryabov, D. S. Properties of discrete breathers in graphane from ab initio simulations. Phys. Rev. B, 2014, 90(4), 045432.
http://dx.doi.org/10.1103/PhysRevB.90.045432

14. Kistanov, A. A., Dmitriev, S. V., Chetverikov, A. P., and Velarde, M. G. Head-on and head-off collisions of discrete breathers in two-dimensional anharmonic crystal lattices. Eur. Phys. J. B, 2014, 87(9), 211.
http://dx.doi.org/10.1140/epjb/e2014-50343-6

15. Toda, M. Theory of Nonlinear Lattices, 2nd. ed. Springer-Verlag, Berlin, 1989.
http://dx.doi.org/10.1007/978-3-642-83219-2

16. Nekorkin, V. I. and Velarde, M. G. Synergetic Phenomena in Active Lattices. Patterns, Waves, Solitons, Chaos. Springer, Berlin, 2002.
http://dx.doi.org/10.1007/978-3-642-56053-8

17. Cisneros-Ake, L., Cruzeiro, L., and Velarde, M. G. Mobile localized solutions for an electron in lattices with dispersive and non-dispersive phonons. Physica D, 2015, 306, 82–93.
http://dx.doi.org/10.1016/j.physd.2015.05.008

 

Back to Issue