eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Nanostructured zinc oxide filler for modification of polymer-polymer composites: structure and tribological properties; pp. 82–87

Full article in PDF format | doi: 10.3176/proc.2015.1S.03

Ivan Bochkov, Arvis Kokins, Remo Merijs Meri, Janis Zicans, Juozas Padgurskas, Andrius Zunda, Raimondas Kreivaitis


Self-lubricating behaviour of materials is very demanded in industry. In this study we investigated the effect of anisometric nanostructured ZnO filler (tetrapod shaped particles with arm length of 70–100 nm and diameter of 10 nm) and ethylene-1-octene copolymer on structure and tribological properties of isotactic polypropylene (PP). It was observed that addition of EOC caused the increment of roughness as well as of the coefficient of friction (COF) of the investigated composites. Addition of ZnO, in its turn, caused decrement of the COF and improvement of surface quality at certain nanofiller contents.



  1. Akinci, A. Mechanical and structural properties of polypropylene composites filled with graphite flakes. Arch. Mater. Sci. Eng., 2009, 35(2), 91–94.

  2. Yanga, H.-S., Kima, H.-J., Sonb, J., Parkc, H.-J., Leed, B.-J., and Hwange, T.-S. Rice-husk flour filled poly­propylene composites; mechanical and morphological study. Compos. Struct., 2004, 63, 305–312.

  3. López Manchadoa, M. A., Valentinib, L., Biagiottib, J., and Kennyb, J. M. Thermal and mechanical properties of single-walled carbon nanotubes–polypropylene com­posites prepared by melt processing. Carbon, 2005, 43, 1499–1505.

  4. Zhang, L. M. and Dai, G. C. Effect of interfacial treatment on the thermal properties of thermal conductive plastics. Express Polym. Lett., 2007, 1, 608–615.

  5. Silvestre, C., Cimmino, S., Pezzuto, M., Marra, A., Ambrogi, V., Dexpert-Ghys, J. et al. Preparation and characterization of isotactic polypropylene/zinc oxide microcomposites with antibacterial activity. Polym. J., 2013. 45, 938–945.

  6. Hong, J., Park, D. W., and Shim, S. E. A review on thermal conductivity of polymer composites using carbon-based fillers: carbon nanotubes and carbon fibers. Carbon Lett., 2010, 11, 347–356.

  7. Ebadi-Dehaghani, H. and Nazempour. M. Thermal con­ductivity of nanoparticles filled polymers. In Smart Nano­particles Technology (Hashim, A., ed.). INTECH, Shanghai, 2012.

  8. Altan, M., Yildirim, H., and Uysal, A. Tensile properties of polypropylene/metal oxide nano composites. J. Sci. Technol., 2011, 1, 25–30. Online.

  9. Hironaka, S., Komoto, T., and Tanaka, K. Morphological study of the wear of crystalline polymers II: isotactic poly(propylene). Wear, 1983, 87, 85–92.

10. Chakraborty, H., Sinha, A., Mukherjee, N., Ray, D., and Chattopadhyay, P. P. A study on nanoindentation and tribological behavior of multifunctional ZnO/PMMA nanocomposite. Mater. Lett., 2013, 93, 137–140.

11. Songa, H.-J., Zhanga, Z.-Z., Mena, X.-H., and Luoa, Z.-Z. A study of the tribological behavior of nano-ZnO-filled polyurethane composite coatings. Wear, 2010, 269, 79–85.

12. Lawrowski, Z. Polymers in the construction of serviceless sliding bearings. Arch. Mater. Sci. Eng., 2007, 7, 139–150.

13. Quintelier, J., Samyn, P., De Doncker, L., Vermeulen, J., Tuzolana, T., Cardon, L. et al. Self-lubricating and self-protecting properties of polymer composites for wear and friction applications. Polym. Compos., 2009, 30, 932–940.

14. Grabis, J., Steins, I., Rasmane, D., and Heidemane, G. Nano­size NiO/YSZ powders produced by ICP technique. J. Eur. Ceram. Soc., 1997. 17, 1437–1442.

15. Bagheri-Kazemabada, S., Foxc, D., Chenc, Y., Gee­verd, L. M., Khavandia, A., Bagherie, R. et al. Morphol­ogy, rheology and mechanical properties of polypropylene/ethylene–octene copolymer/clay nano­composites: Effects of the compatibilizer. Compos. Sci. Technol., 2012, 72, 1697–1704.


Back to Issue