eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2021): 1.024
Tracks of surface drifters from a major fairway to marine protected areas in the Gulf of Finland; pp. 226–233
PDF | doi: 10.3176/proc.2015.3.04

Nicole Delpeche-Ellmann, Tomas Torsvik, Tarmo Soomere

Pollution caused by shipping accidents or by intentional discharge of harmful materials can be transported by currents to locations far from the source, and therefore poses a potential risk to marine protected areas (MPAs). The risk of current-driven pollution to MPAs in the Gulf of Finland is assessed by analysing the paths from 23 surface drifters crossing a major fairway in the western and central parts of the Gulf of Finland. About 2/3 of the drifters entered into one of the MPAs. The majority of drifters reached the Ekenäs Archipelago near the western coast of Finland. The travel time from the fairway to the MPAs ranged from 1.3 days to 36.1 days, suggesting that different processes may be influencing the surface circulation patterns and that the drifters can travel long distances before reaching a MPA.


  1. Ambjörn, C. Seatrack Web, forecasts of oil spills, a new version. Environmental Research, Engineering and Management, 2007, 3(41), 60–66.

  2. Andrejev, O., Myrberg, K., Alenius, P., and Lund­berg, P. A. Mean circulation and water exchange in the Gulf of Finland – a study based on three-dimensional modeling. Boreal Environ. Res., 2004, 9, 1–16.

  3. Andrejev, O., Soomere, T., Sokolov, A., and Myrberg K. The role of spatial resolution of a three-dimensional hydrodynamic model for marine transport risk assess­ment. Oceanologia, 2011, 53(1-TI), 309–334.

  4. Barsan, E. Use of simulation for optimizing manoeuvres in Constantza Port. Int. J. Mar. Nav. Safety Sea Transp., 2008, 2(1), 23–28.

  5. Burgherr, P. In-depth analysis of accidental oil spills from tankers in the context of global spill trends from all sources. J. Hazard. Mater., 2007, 140, 245–256.

  6. Chrastansky, A. and Callies, U. Model-based long-term reconstruction of weather-driven variations in chronic oil pollution along the German North Sea coast. Mar. Poll. Bull., 2009, 58, 967–975.

  7. Delpeche-Ellmann, N. C. and Soomere, T. Investigating the Marine Protected Areas most at risk of current-driven pollution in the Gulf of Finland, the Baltic Sea, using a Lagrangian transport model. Mar. Poll. Bull., 2013, 67(1–2), 121–129.

  8. Delpeche-Ellmann, N. and Soomere, T. Using Lagrangian models to assist in maritime management of Coastal and Marine Protected Areas. J. Coastal Res., 2013, SI 65, 36–41.

  9. Draffin, N. Marpol annex VI: Who will carry the can? MER – Marine Engineers Review, 2005, Issue APR., 40–41.

10. Fingas, M. (ed.). Handbook of Oil Spill Science and Technology. Wiley-Blackwell, 2015.

11. Giudici, A. and Soomere, T. Finite-time compressibility as an agent of frequent spontaneous patch formation in the surface layer: a case study for the Gulf of Finland, the Baltic Sea. Mar. Pollut. Bull., 2014, 89(1–2), 239–249.

12. HELCOM. 2009. Ensuring Safe Shipping in the Baltic (Stankiewicz, M. and Vlasov, N., eds). Helsinki Commission, Helsinki.

13. HELCOM. 2013. Overview of the Status of the Network of Baltic Sea Marine Protected Areas (Borg, J., Eke­bom, J., and Blankett, P., eds). Helsinki Commission, Helsinki.

14. Höglund, A. and Meier, H. E. M. Environmentally safe areas and routes in the Baltic Proper using Eulerian tracers. Mar. Poll. Bull., 2012, 64(7), 1375–1385.

15. Knapp, S. and van de Velden, M. Global ship risk profiles: safety and the marine environment. Transport. Res. D – Tr. E., 2011, 16(8), 595–603.

16. Lehmann, A. and Hinrichsen, H.-H. Water, heat and salt exchange between the deep basins of the Baltic Sea. Boreal Environ. Res., 2002, 7(4), 405–415.

17. Lehmann, A., Myrberg, K., and Höflich, K. A statistical approach to coastal upwelling in the Baltic Sea based on the analysis of satellite data for 1990–2009. Oceanologia, 2012, 54, 369–393.

18. Leppäranta, M. and Myrberg, K. Physical Oceanography of the Baltic Sea. Springer, Berlin, 2009.

19. Lu, X., Soomere, T., Stanev, E., and Murawski, J. Identifica­tion of the environmentally safe fairway in the South-Western Baltic Sea and Kattegat. Ocean Dyn., 2012, 62(6), 815–829.

20. Lucas, S. A. and Planner, J. H. MARPOL Annex V and Environmentally Hazardous Substance (EHS) require­ments for coal cargo residues. In 11th International Conference on Bulk Materials Storage, Handling and Transportation, ICBMH 2013; Newcastle, NSW; Australia; 2–4 July 2013. Code 101172.

21. Montewka, J., Krata, P., Goerlandt, F., Mazaheri, A., and Kujala, P. Marine traffic risk modelling – an innovative approach and a case study. Proc. Inst. Mech. Eng. O J. Risk. Reliab., 2011, 225, 307–322.

22. Montewka, J., Weckström, M., and Kujala, P. A probabilistic model estimating oil spill clean-up costs – a case study for the Gulf of Finland. Mar. Poll. Bull., 2013, 76, 61–71.

23. Murawski, J. and Woge Nielsen, J. Applications of an oil drift and fate model for fairway design. In Preventive Methods for Coastal Protection (Soomere, T. and Quak, E., eds). Springer, 2013, 367–415.

24. Myrberg, K. and Soomere, T. The Gulf of Finland, its hydrography and circulation dynamics. In Preventive Methods for Coastal Protection (Soomere, T. and Quak, E., eds). Springer, 2013, 181–222.

25. Sonninen, S., Nuutinen, M., and Rosqvist, T. Development Process of the Gulf of Finland Mandatory Ship Reporting System. VTT Publications 614. VTT Technical Research Centre of Finland, 2006.

26. Soomere, T. and Quak, E. (eds). Preventive Methods for Coastal Protection: Towards the Use of Ocean Dynamics for Pollution Control. Springer, 2013.

27. Soomere, T., Viikmäe, B., Delpeche, N., and Myrberg, K. Towards identification of areas of reduced risk in the Gulf of Finland, the Baltic Sea. Proc. Estonian Acad. Sci., 2010, 59(2), 156–165.

28. Soomere, T., Delpeche, N., Viikmäe, B., Quak, E., Meier, H. E. M., and Döös, K. Patterns of current-induced transport in the surface layer of the Gulf of Finland. Boreal Environ. Res., 2011, 16(Suppl. A), 49–63.

29. Soomere, T., Viidebaum, M., and Kalda, J. On dispersion properties of surface motions in the Gulf of Finland. Proc. Estonian Acad. Sci., 2011, 60(4), 269–279.

30. Soomere, T., Döös, K., Lehmann, A., Meier, H. E. M., Murawski, J., Myrberg, K., and Stanev, E. The potential of current- and wind-driven transport for environmental management of the Baltic Sea. Ambio, 2014, 43, 94–104.

31. Soosaar, E., Maljutenko, I., Raudsepp, U., and Elken, J. An investigation of anticyclonic circulation in the southern Gulf of Riga during the spring period. Cont. Shelf Res., 2014, 78, 75–84.

32. Torsvik, T. and Kalda, J. Analysis of surface current properties in the Gulf of Finland using data from surface drifters. In 2014 IEEE/OES Baltic Inter­national Symposium. Tallinn, 2014, 1–9.

33. Viikmäe, B. and Soomere, T. Spatial pattern of current-driven hits to the nearshore from a major marine highway in the Gulf of Finland. J. Mar. Syst., 2014, 129, 106–117.

34. Viikmäe, B., Soomere, T., Viidebaum, M., and Bere­zovski, A. Temporal scales for transport patterns in the Gulf of Finland. Estonian J. Eng., 2010, 16, 211–227.

35. Viikmäe, B., Torsvik, T., and Soomere, T. Verifying the location of coastal areas exposed to current-driven pollution using surface drifters in the Gulf of Finland. Proc. Estonian Acad. Sci., 2015, 64, 379–388.

36. Wang, S. L. and Schonfeld, P. Scheduling interdependent waterway projects through simulation and genetic optimization. J. Waterw. Port Coast. Ocean Eng.-ASCE., 2005, 131(3), 89–97.

Back to Issue