eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2021): 1.024
Numerical investigation of acoustic solitons; pp. 304–310
PDF | doi: 10.3176/proc.2015.3.15

Bruno Lombard, Jean-François Mercier, Olivier Richoux

Acoustic solitons can be obtained by considering the propagation of large amplitude sound waves across a set of Helmholtz resonators. The model proposed by Sugimoto and his coauthors has been validated experimentally in previous works. Here we examine some of its theoretical properties: low-frequency regime, balance of energy, stability. We propose also numerical experiments illustrating typical features of solitary waves.


1. Engelbrecht, J., Fridman, V., and Pelinovski, E. Nonlinear Evolution Equations. Longman, Harlow, 1988.

2. LeVeque, R. J. and Yong, D. H. Solitary waves in layered nonlinear media. SIAM J. Appl. Math., 2003, 63, 1539–1560.

3. Lombard, B. and Mercier, J. F. Numerical modeling of nonlinear acoustic waves in a tube with Helmholtz resonators. J. Comput. Phys., 2014, 259, 421–443.

4. Matignon, D. An introduction to fractional calculus. In Scaling, Fractals and Wavelets (Abry, P., Goncalves, P., and Lévy Véhel, J., eds). ISTE-Wiley, 2008, 237–273.

5. Richoux, O., Lombard, B., and Mercier, J. F. Generation of acoustic solitary waves in a lattice of Helmholtz resonators. Wave Motion, 2015, 56, 85–99.

6. Sugimoto, N. Propagation of nonlinear acoustic waves in a tunnel with an array of Helmholtz resonators. J. Fluid. Mech., 1992, 244, 55–78.

7. Sugimoto, N., Masuda, M., Yamashita, K., and Horimoto, H. Verification of acoustic solitary waves. J. Fluid. Mech., 2004, 504, 271–299.

Back to Issue