eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2021): 1.024
Synthesis of aza-phenylalanine, aza-tyrosine, and aza-tryptophan precursors via hydrazine alkylation; pp. 168–178
PDF | doi: 10.3176/proc.2015.2.05

Anton Mastitski, Tõiv Haljasorg, Karin Kipper, Jaak Järv

Aza-amino acid precursors with an aromatic side chain were synthesized using hydrazine alkylation. This synthetic pathway avoided use of hydrogen gas and expensive hydrogenation catalysts. For the optimization of this alkylation reaction various solvents and different reaction conditions were used. Aza-phenylalanine, aza-tyrosine, and aza-tryptophan precursors with different N- and side-chain protecting groups were synthesized starting from N-protected hydrazines.


  1. Quibell, M., Turnell, W. G., and Johnson, T. Synthesis of azapeptides by the Fmoc/tert-butyl/polyamide technique. J. Chem. Soc., Perkin Trans., 1993, 1, 2843–2849.

  2. Busnel, O., Bi, L., Dali, H., Cheguillaume, A., Chevance, S., Bondon, A. et al. Solid-phase synthesis of “mixed” peptidomimetics using Fmoc-protected Aza-β3-amino acids and α-amino acids. J. Org. Chem., 2005, 70(26), 10701–10708.

  3. Boeglin, D. and Lubell, W. D. Aza-amino acid scanning of secondary structure suited for solid-phase peptide synthesis with Fmoc chemistry and aza-amino acids with heteroatomic side chains. J. Comb. Chem., 2005, 7(6), 864–878.

  4. Freeman, N. S., Hurevich, M., and Gilon, C. Synthesis of N¢-substituted Ddz-protected hydrazines and their application in solid phase synthesis of aza-peptides. Tetrahedron, 2009, 65, 1737–1745.

  5. Freeman, N. S., Tal-Gan, Y., Klein, S., Levitzki, A., and Gilon, C. Microwave-assisted solid-phase aza-peptide synthesis: aza scan of a PKB/Akt inhibitor using aza-arginine and aza-proline precursors. J. Org. Chem., 2011, 76, 3078–3085.

  6. Spiegel, J., Mas-Moruno, C., Kessler, H., and Lubell, W. D. Cyclic aza-peptide integrin ligand synthesis and biological activity. J. Org. Chem., 2012, 77, 5271–5278.

  7. Busnel, O. and Baudy-Floc’h, M. Preparation of new monomers aza-β3-aminoacids for solid-phase syntheses of aza-β3-peptides. Tetrahedron Lett., 2007, 48, 5767–5770.

  8. Lee, J. and Bogyo, M. Development of near-infrared fluorophore (NIRF)-labeled activity-based probes for in vivo imaging of legumain. ACS Chem. Biol., 2010, 5, 233–243.

  9. Peifer, M., Giacomo, F. D., Schandl, M., and Vasella, A. Oligonucleotide analogues with integrated bases and backbone hydrazide- and amide-linked analogues. 1. Design and synthesis of monomeric building blocks. Helv. Chim. Acta, 2009, 92, 1134–1166.

10. Fässler, A., Bold, G., Capraro, H.-G., Cozens, R., Mestan, J., Poncioni, B. et al. Aza-peptide analogs as potent human immunodeficiency virus type-1 protease inhibitors with oral bioavailability. J. Med. Chem., 1996, 39, 3203–3216.

11. Mastitski, A., Kisseljova, K., and Järv, J. Synthesis of the Fmoc-aza-Arg(Boc)2 precursor via hydrazine alkyla­tion. Proc. Estonian Acad. Sci., 2014, 63, 438–443.

12. Mastitski, A. and Järv, J. One-pot synthesis of Fmoc- and Boc-protected aza-methionine precursors from 2-methylthioacetaldehyde dimethyl acetal. Organic Pre­parations and Procedures International, 2014, 46(6), 559–564.

13. Kline, G. B. and Cox, S. H. A new synthesis of DL-glutamine. J. Org. Chem., 1961, 26, 1854–1856.

14. Dutta, A. S. and Morley, J. S. Polypeptides. Part XIII. Preparation of α-aza-amino-acid (carbazic acid) derivatives and intermediates for the preparation of α-aza-peptides. J. Chem. Soc., Perkin Trans., 1975, 1, 1712–1720.

15. Kost, A. N. and Sagitullin, R. S. Recations of hydrazine derivatives. 37. Synthesis of alkylhydrazines and pyrazole esters of dimethylcarbamic acid. J. Gen. Chem. (USSR), 1963, 33, 867–874.

16. Ou, J., Zhu, X., Wang, L., Xu, C., Liu, F., Ren, L. et al. Synthesis and bioactivity study of 2-acylamino-substituted N ¢-benzylbenzohydrazide derivatives. J. Agric. Food Chem., 2012, 60, 10942–10951.

17. Liu, R., Zhang, P., Gan, T., and Cook, J. M. Regiospecific bromination of 3-methylindoles with NBS and its application to the concise synthesis of optically active unusual tryptophans present in marine cyclic peptides. J. Org. Chem., 1997, 62, 7447–7456.

18. Meyer, V. Zur Kenntnis der Ammonium-Verbindungen. Ber. dtsch. chem. Ges., 1877, 10, 309–315.

19. Carpino, L. A. and Han, G. Y. The 9-fluorenylmethoxy­carbonyl amino-protecting group. J. Org. Chem., 1972, 37, 3404–3409.

20. Rabjohn, N. The synthesis and reactions of disazodi­carboxylates. J. Am. Chem. Soc., 1948, 70, 1181–1183.

21. Hofmann, K., Lindenmann, A., Magee, M. Z., and Khan, N. H. Studies on polypeptides. III Novel routes to α-amino acid and polypeptide hydrazides. J. Am. Chem. Soc., 1952, 74, 470–476.

22. Melendez, R. E. and Lubell, W. D. Aza-amino acid scan for rapid identification of secondary structure based on the application of N-Boc-Aza1-dipeptides in peptide synthesis. J. Am. Chem. Soc., 2004, 126(21), 6759–6764.

23. Mäeorg, U., Pehk, T., and Ragnarsson, U. Synthesis of substituted hydrazines from triprotected precursors. Acta Chem. Scan., 1999, 53, 1127–1133.

24. Kochi, J. K. and Hammond, G. S. Benzyl tosylates. I. Pre­paration and properties. J. Am. Chem. Soc., 1953, 75, 3443–3444.

25. Kornblum, N., Smiley, R. A., Blackwood, R. K., and Iffland, D. C. The Mechanism of the reaction of silver nitrite with alkyl halides. The contrasting reactions of silver and alkali metal salts with alkyl halides. The alkylation of ambident anions. J. Am. Chem. Soc., 1955, 77, 6269–6280.

26. Takatori, K., Lee, M., and Kajiwara, M. Asymmetric synthesis of L-[3-13C]tryptophan. Current Radio­pharmaceuticals, 2008, 1, 122–124.

27. Ito, H. and Ichimura, K. 4-(tert-Butoxycarbonyloxy)benzyl p-toluenesulfonates as acid amplifiers applicable to chemically amplified photoresists. Macromol. Chem. Phys., 2000, 201, 132–138.<132::AID-MACP132>3.0.CO;2-3

28. Ruenitz, P. C., Arrendale, R. F., Schmidt, W. F., Carolyn, B., Thompson, C. B., and Nanavati, N. T. Phenolic metabolites of clomiphene: [(E,Z)-2-[4-(1,2-diphenyl-2-chlorovinyl)phenoxy]ethyl]diethylamine. Preparation, electrophilicity, and effects in MCF 7 breast cancer cells. J. Med. Chem., 1989, 32, 192–197.

29. Brun, K. A., Linden, A., and Heimgartner, H. New optically active 2H-azirin-3-amines as synthons for enantiomerically pure 2,2-disubstituted glycines: synthesis of synthons for Tyr(2Me) and Dopa(2Me), and their incorporation into dipeptides. HeIv. Chim. Acta, 2002, 85, 3422–3443.<3422::AID-HLCA3422>3.0.CO;2-N

30. Dourlat, J., Liu, W.-Q., Nohad Gresh, N., and Garbay, C. Novel 1,4-benzodiazepine derivatives with anti­proliferative properties on tumor cell lines. Bioorg. Med. Chem. Lett., 2007, 17, 2527–2530.

31. James, P. N. and Snyder, H. R. Organic Syntheses. Coll. Vol. 4, 1963.

32. Takeda, T. and Mukayama, T. Asymmetric total synthesis of indolmycin. Chem. Lett., 1980, 163–166.

Back to Issue