eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2021): 1.024
Numerical simulation of the propagation of ship-induced Riemann waves of depression into the Venice Lagoon; pp. 22–35
PDF | doi: 10.3176/proc.2015.1.04

Artem Rodin, Tarmo Soomere, Kevin E. Parnell, Luca Zaggia

Large in situ measured ship-induced depression waves (Bernoulli wakes) in the Malamocco–Marghera industrial channel of the Venice Lagoon are interpreted as long-living strongly nonlinear Riemann (simple) waves of depression. The properties of these depressions are numerically replicated using nonlinear shallow water theory and the CLAWPACK software. The further behaviour of measured depressions is analysed by means of replicating the vessel-induced disturbances with the propagation of initially smooth free waves. It is demonstrated that vessel-driven depressions of substantial height (> 0.3 m) often propagate for more than 1 km from the navigation channel into areas of the lagoon of approximately 2 m water depth. As a depression wave propagates into the lagoon, its front slope becomes gradually less steep, but the rear slope preserves an extremely steep bore-like appearance and the amplitude becomes almost independent of the initial properties of the disturbance. Analysis suggests that even modest ships in terms of their size, sailing speed, and blocking coefficient may generate deep depressions that travel as compact and steep entities resembling asymmetric solitary waves over substantial distances into shallow water adjacent to navigation channels. Their impact may substantially increase the environmental impact of ship wakes in this and similar water bodies.


Akylas, T. 1984. On the excitation of long nonlinear water waves by a moving pressure distribution. J. Fluid Mech., 141, 455–466.

Ali, M. M., Murphy, K. J., and Langendorff, J. 1999. Inter­relations of river ship traffic with aquatic plants in the River Nile, Upper Egypt. Hydrobiologia, 415, 93–100.

Arcas, D. and Segur, H. 2012. Seismically generated tsunamis. Phil. Trans. R. Soc., 370, 1505–1542.

Baines, P. G. 1997. Topographic Effects in Stratified Flows. Cambridge Monographs on Mechanics. Cambridge University Press, Cambridge, UK.

Balzerek, H. and Kozlowski, J. 2007. Ship-induced riverbank and harbour damage. Evidence for claims processing. Hydro International, 11(8), 18–21.

Benjamin, T. B. and Lighthill, M. J. 1954. On cnoidal waves and bores. Proc. R. Soc. London A, 224, 448–460.

Brambati, A., Carbognin, L., Quaia, T., Teatini, P., and Tosi, L. 2003. The Lagoon of Venice: geological setting, evolu­tion and land subsidence. Episodes, 26(3), 264–265.

Carrier, G. F., Wu, T. T., and Yeh, H. 2003. Tsunami run-up and drawdown on a plane beach. J. Fluid Mech., 475, 79–99.

Constantine, T. 1961. On the movement of ships in restricted waterways. J. Fluid Mech., 9, 247–256.

Darmon, A., Benzaquen, M., and Raphael, E. 2014. Kelvin wake pattern at large Froude numbers. J. Fluid Mech., 738, Art. No. R3.

Defendi, V., Kovačević, V., Zaggia, L., and Arena, F. 2010. Estimating sediment transport from acoustic measure­ments in the Venice Lagoon inlets. Cont. Shelf Res., 30, 883–893.

Didenkulova, I. I., Zahibo, N., Kurkin, A. A., and Peli­novsky, E. N. 2006. Steepness and spectrum of a nonlinearly deformed wave on shallow waters. Izv. Atmos. Ocean. Phys., 42, 773–776.

Didenkulova, I., Pelinovsky, E., and Rodin, A. 2011a. Non­linear interaction of large-amplitude unidirectional waves in shallow water. Estonian J. Eng., 17, 289–300.

Didenkulova, I., Pelinovsky, E., and Soomere, T. 2011b. Can the waves generated by fast ferries be a physical model of tsunami? Pure Appl. Geophys., 168, 2071–2082.

Didenkulova, I. I., Pelinovsky, E. N., and Didenkulov, O. I. 2014. Run-up of long solitary waves of different polarities on a plane beach. Izv. Atmos. Ocean. Phys., 50, 532–538.

El-Kader, F. A., El-Soud, M. S. A., El-Serafy, K., and Hassan, E. A. 2003. An integrated navigation system for Suez Canal (SCINS). J. Navigation, 56, 241–255.

Engelbrecht, J. K., Fridman, V. E., and Pelinovski, E. N. 1988. Nonlinear Evolution Equations. Pitman Research Notes in Mathematics Series, No. 180. Longman, London, 1988.

Ertekin, R. C., Webster, W. C., and Wehausen, J. V. 1984. Ship-generated solitons. In Proceedings of 15th Symposium on Naval Hydrodynamics, Hamburg, Federal Republic of Germany, September 2–7. National Academy Press, Washington, D.C., pp. 347–364.

Ertekin, R. C., Webster, W. C., and Wehausen, J. V. 1986. Waves caused by a moving disturbance in a shallow channel of finite width. J. Fluid Mech., 169, 275–292.

Fernando, H. J. S., Braun, A., Galappatti, R., Ruwanpura, J., and Wirisinghe, S. C. 2008. Tsunamis: manifestation and aftermath. In Large Scale Disasters. Cambridge University Press, Cambridge, pp. 258–292.

Forsman, B. 2001. From bow to beach. SSPA Highlights, No. 3/2001, 4–5.

Gelinas, M., Bokuniewicz, H., Rapaglia, J., and Lwiza, K. M. M. 2013. Sediment resuspension by ship wakes in the Venice Lagoon. J. Coast. Res., 29, 8–17.

Göransson, G., Larson, M., and Althage, J. 2014. Ship-generated waves and induced turbidity in the Göta Älv River in Sweden. J. Waterw. Port Coast. Ocean Eng., 140(3), 04014004.

Gourlay, T. P. 2001. The supercritical bore produced by a high-speed ship in a channel. J. Fluid Mech., 434, 399–409.

Gourlay, T. P. 2003. Ship squat in water of varying depth. Int. J. Marit. Eng., 145, 1–8.

Gourlay, T. P. 2006. A simple method for predicting the maximum squat of a high-speed displacement ship. Mar. Technol. Soc. J., 43, 146–151.

Gourlay, T. P. and Cook, S. M. 2004. Flow past a ship radiating a bore in a channel. Proc. Inst. Mech. Eng. M. J. Eng. Marit. Environ., 218, 31–40.

Gourlay, T. P. and Tuck, E. O. 2001. The maximum sinkage of a ship. J. Ship Res., 45, 50–58.

Graff, W. 1962. Untersuchungen über die Ausbildung des Wellenwiderstandes im Bereich der Stauwellen­geschwindig­keit in flachem, seitlich beschränktem Fahrwasser. Schiffstechnik, 9, 110–122.

Grimshaw, R. H. J. and Smyth, N. 1986. Resonant flow of a stratified flow over topography. J. Fluid Mech., 169, 429–464.

Grimshaw, R. H. J., Hunt, J. C. R., and Chow, K. W. 2014. Changing forms and sudden smooth transitions of tsunami waves. J. Ocean Eng. Mar. Energy,

Hamer, M. 1999. Solitary killers. New Sci., 163(2201), 18–19.

Krylov, A. N. 2003. On the wave resistance and large ship waves. In My Memoirs. Politekhnika, Sankt-Peterburg, pp. 364–368 (in Russian).

Kurennoy, D., Soomere, T., and Parnell, K. E. 2009. Vari­ability in the properties of wakes generated by high-speed ferries. J. Coast. Res., SI 56, 519–523.

Kuznetsov, N., Maz¢ya, V., and Vainberg, B. 2002. Linear Water Waves: A Mathematical Approach. Cambridge University Press.

Lee, S. J., Yates, G. T., and Wu, T. Y. 1989. Experiments and analyses of upstream-advancing solitary waves generated by moving disturbances. J. Fluid Mech., 199, 569–593.

LeVeque, R. J. 2004. Finite-Volume Methods for Hyperbolic Problems. Cambridge University Press.

Lighthill, J. 1978. Waves in Fluids. Cambridge University Press.

Macfarlane, G. J., Duffy, J. T., and Bose, N. 2014. Rapid assessment of boat-generated waves within sheltered waterways. Aust. J. Civil Eng., 12(1), 31–40.

Madricardo, F. and Donnici, S. 2014. Mapping past and recent landscape modifications in the Lagoon of Venice through geophysical surveys and historical maps. Anthropocene, 6, 86–96.

Millward, A. 1996. A review of the prediction of squat in shallow water. J. Navigation, 49, 77–88.

Naghdi, P. M. and Rubin, M. B. 1984. On the squat of a ship. J. Ship Res., 28, 107–117.

Neuman, D., Tapio, E., Haggard, D., Laws, K., and Bland, R. 2001. Observation of long waves generated by ferries. Can. J. Remote Sens., 27, 361–370.

Newman, J. N. 1977. Marine Hydrodynamics. The MIT Press.

Noblesse, F., He, J., Zhu, Y., Hong, L., Zhang, C., Zhu, R., and Yang, C. 2014. Why can ship wakes appear narrower than Kelvin’s angle? Eur. J. Mech. B/Fluids, 46, 164–171.

Parnell, K. E. and Kofoed-Hansen, H. 2001. Wakes from large high-speed ferries in confined coastal waters: management approaches with examples from New Zealand and Denmark. Coast. Manage., 29, 217–237.

Parnell, K. E., McDonald, S. C., and Burke, A. E. 2007. Shore­line effects of vessel wakes, Marlborough Sounds, New Zealand. J. Coast. Res., SI 50, 502–506.

Parnell, K. E., Soomere, T., Zaggia, L., Rodin, A., Loren­zetti, G., Rapaglia, J., and Scarpa, G. M. 2015. Ship-induced solitary Riemann waves of depression in Venice Lagoon. Phys. Lett. A, 379(6), 555–559.

Pelinovsky, E. N. and Rodin, A. A. 2012. Transformation of a strongly nonlinear wave in a shallow-water basin. Izv. Atmos. Ocean. Phys., 48, 343–349.

Peregrine, D. H. 1966. Calculations of the development of an undular bore. J. Fluid Mech., 25, 321–330.

Peterson, P., Soomere, T., Engelbrecht, J., and van Groe­sen, E. 2003. Soliton interaction as a possible model for extreme waves in shallow water. Nonlinear Proc. Geoph., 10, 503–510.

Rabaud, M. and Moisy, F. 2013. Ship wakes: Kelvin or Mach angle? Phys. Rev. Lett., 110, Art. No. 214503.

Rapaglia, J., Zaggia, L., Ricklefs, K., Gelinas, M., and Boku­niewicz, H. 2011. Characteristics of ships’ depression waves and associated sediment resuspension in Venice Lagoon, Italy. J. Mar. Syst., 85, 45–56.

Ravens, T. M. and Thomas, R. C. 2008. Ship wave-induced sedimentation of a tidal creek in Galveston Bay. J. Waterw. Port Coast. Ocean Eng., 134, 21–29.

Rudenko, O. and Soluyan, S. 1977. Theoretical Background of Nonlinear Acoustics. Plenum, New York, 1977.

Sarretta, A., Pillon, S., Molinaroli, E., Guerzoni, S., and Fontolan, G. 2010. Sediment budget in the Lagoon of Venice, Italy. Cont. Shelf Res., 30, 934–949.

Sheremet, A., Gravois, U., and Tian, M. 2013. Boat-wake statistics at Jensen Beach, Florida. J. Waterw. Port Coast. Ocean Eng., 139, 286–294.

Sommerfeld, A. 1949. Partial Differential Equations in Physics. Elsevier.

Soomere, T. 2005. Fast ferry traffic as a qualitatively new forcing factor of environmental processes in non-tidal sea areas: a case study in Tallinn Bay, Baltic Sea. Environ. Fluid Mech., 5, 293–323.

Soomere, T. 2007. Nonlinear components of ship wake waves. Appl. Mech. Rev., 60, 120–138.

Soomere, T., Parnell, K. E., and Didenkulova, I. 2011. Water transport in wake waves from high-speed vessels. J. Mar. Syst., 88, 74–81.

Sorensen, R. M. 1973. Ship-generated waves. Adv. Hydrosci., 9, 49–83.

Stumbo, S., Fox, K., Dvorak, F., and Elliot, L. 1999. The prediction, measurement, and analysis of wake wash from marine vessels. Mar. Technol., 36, 248–260.

Torsvik, T. and Soomere, T. 2008. Simulation of patterns of wakes from high-speed ferries in Tallinn Bay. Estonian J. Eng., 14, 232–254.

Torsvik, T., Didenkulova, I., Soomere, T., and Parnell, K. E. 2009a. Variability in spatial patterns of long nonlinear waves from fast ferries in Tallinn Bay. Nonlinear Proc. Geoph., 16, 351–363.

Torsvik, T., Pedersen, G., and Dysthe, K. 2009b. Waves generated by a pressure disturbance moving in a channel with a variable cross-sectional topography. J. Waterw. Port Coast. Ocean Eng., 135, 120–123.

Torsvik, T., Soomere, T., Didenkulova, I., and Sheremet, A. 2015. Identification of ship wake structures by a time-frequency method. J. Fluid Mech., 765, 229–251.

Varyani, K. 2006. Full scale study of the wash of high speed craft. Ocean Eng., 33, 705–722.

Wehausen, J. V. 1973. The wave resistance of ships. Adv. Appl. Mech., 13, 93–245.

Whitham, G. B. 1974. Linear and Nonlinear Waves. Wiley, New York.

Zahibo, N., Didenkulova, I., Kurkin, A., and Pelinovsky, E. 2008. Steepness and spectrum of nonlinear deformed shallow water wave. Ocean Eng., 35, 47–52.

Back to Issue