eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2021): 1.024
Attitude determination and control for centrifugal tether deployment on the ESTCube-1 nanosatellite; pp. 242–249
PDF | doi: 10.3176/proc.2014.2S.05

Andris Slavinskis, Erik Kulu, Jaan Viru, Robert Valner, Hendrik Ehrpais, Tõnis Uiboupin, Markus Järve, Endel Soolo, Jouni Envall, Tobias Scheffler, Indrek Sünter, Henri Kuuste, Urmas Kvell, Jaanus Kalde, Kaspars Laizans, Erik Ilbis, Tõnis Eenmäe, Riho Vendt, Kaupo Voormansik, Ilmar Ansko, Viljo Allik, Silver Lätt, Mart Noorma

This paper presents the design, development, and pre-launch characterization of the ESTCube-1 Attitude Determination and Control System (ADCS). The design driver for the ADCS has been the mission requirement to spin up the satellite to 360 deg × s1 with controlled orientation of the spin axis and to acquire the angular velocity and the attitude during the scientific experiment. ESTCube-1 is a one-unit CubeSat launched on 7 May 2013, 2:06 UTC on board the Vega VV02 rocket. Its primary mission is to measure the Coulomb drag force exerted by a natural plasma stream on a charged tether and, therefore, to perform the basic proof of concept measurement and technology demonstration of electric solar wind sail technology. The attitude determination system uses three-axis magnetometers, three-axis gyroscopic sensors, and two-axis Sun sensors, a Sun sensor on each side of the satellite. While commercial off-the-shelf components are used for magnetometers and gyroscopic sensors, Sun sensors are custombuilt based on analogue one-dimensional position sensitive detectors. The attitude of the satellite is estimated on board using an Unscented Kalman Filter. An ARM 32-bit processor is used for ADCS calculations. Three electromagnetic coils are used for attitude control. The system is characterized through tests and simulations. Results include mass and power budgets, estimated uncertainties as well as attitude determination and control performance. The system fulfils all mission requirements.



  1. CubeSat Design Specification Rev. 12. The CubeSat Program, Cal Poly SLO. California, 2009.

  2. Ansdell, M., Ehrenfreund, P., and McKay, C. Stepping stones toward global space exploration. Acta Astronaut., 2011, 68(11–12), 2098–2113.

  3. Ehrenfreund, P., McKay, C., Rummel, J. D., Neal, C. R., Masson-Zwaan, T., Ansdell, M. et al. Toward a global space exploration program: a stepping stone approach. Adv. Space Res., 2012, 49(1), 2–48.

  4. Woellert, K., Ehrenfreund, P., Ricco, A. J., and Hertzfeld, H. Cubesats: cost-effective science and technology platforms for emerging and developing nations. Adv. Space Res., 2011, 47, 663–684.

  5. Selva, D. and Krejci, D. A survey and assessment of the capabilities of Cubesats for Earth observation. Acta Astronaut., 2012, 74, 50–68.

  6. Johnson, L., Young, R., Barnes, N., Friedman, L., Lappas, V., and McInnes, C. Solar sails: technology and demonstration status. Int’l J. Aeronaut. Space Sci., 2012, 13(4), 421–427.

  7. Macdonald, M. and McInnes, C. Solar sail science mission applications and advancement. Adv. Space Res., 2011, 48, 1702–1716.

  8. Johnson, L., Whorton, M., Heaton, A., Pinson, R., Laue, G., and Adams, C. NanoSail-D: a solar sail demonstration mission. Acta Astronaut., 2011, 68, 571–575.

  9. Svitek, T., Friedman, L., Nye, W., Biddy, C., and Nehrenz, M. Voyage continues – LightSail-1 mission by the planetary society. In 61st International Astronautical Congress. Prague, 2010, 1, 802–810.

10. Lappas, V., Adeli, N., Visagie, L., Fernandez, J., Theodorou, T., Steyn, W. et al. CubeSail: a low cost CubeSat based solar sail demonstration mission. Adv. Space Res., 2011, 48, 1890–1901.

11. Springmann, J. C., Sloboda, A. J., Klesh, A. T., Bennett, M. W., and Cutler, J. W. The attitude determination system of the RAX satellite. Acta Astronaut., 2012, 75, 120–135.

12. Deschamps, N. C., Grant, C. C., Foisy, D. G., Zee, R. E., Moffat, A. F. J., and Weiss, W. W. The BRITE space telescope: using a nanosatellite constellation to measure stellar variability in the most luminous stars. Acta Astronaut., 2009, 65, 643–650.

13. Koudelka, O., Egger, G., Josseck, B., Deschamp, N., Grant, C. C., Foisy, D. et al. TUGSAT-1/BRITEAustria – the first Austrian nanosatellite. Acta Astronaut., 2009, 64, 1144–1149.

14. Borgeaud, M., Scheidegger, N., Noca, M., Roethlisberger, G., Jordan, F., Choueiri, T. et al. SwissCube: the first entirely-built Swiss student satellite with an Earth observation payload. In Small Satellite Missions for Earth Observation (Sandau, R., Roeser, H. P., and Valenzuela, A., eds). Springer, 2010, 207–213.

15. Larsen, J. A., Amini, R., and Izadi-Zamanabadi, R. Advanced attitude control of pico sized satellites. In 56th International Astronautical Congress. Fukuoka, 2005, 5, 2865–2871.

16. Rowland, D. E., Hill, J., Uribe, P., Klenzing, J., Hunsaker, F., Fowle, M. et al. The NSF Firefly CubeSat mission: Rideshare mission to study energetic electrons produced by lightning. In IEEE Aerospace Conference, 2011, ID 11943740.

17. Kestilä, A., Tikka, T., Peitso, P., Rantanen, J., Näsilä, A. et al. Aalto-1 nanosatellite – technical description and mission objectives. Geosci. Instrum. Method. Data Syst., 2013, 2, 121–130.

18. Blackwell, W., Allen, G., Galbraith, C., Hancock, T., Leslie, R., Osaretin, I. et al. Nanosatellites for Earth environmental monitoring: the MicroMAS project. In 32nd IEEE International Geoscience and Remote Sensing Symposium, 2012, 1–4.

19. Dickinson, J., DeForest, C., and Howard, T. The CubeSat Heliospheric Imaging Experiment (CHIME). In IEEE Aerospace Conference, 2011, ID 11943793.

20. Sarda, K., Eagleson, S., Caillibot, E., Grant, C., Kekez, D., Pranajaya, F. et al. Canadian advanced nanospace experiment 2: scientific and technological innovation on a three-kilogram satellite. Acta Astronaut., 2006, 59, 236–245.

21. Peterson, E. H., Fotopoulos, G., and Zee, R. E. A feasibility assessment for low-cost InSAR formationflying microsatellites. IEEE Trans. Geosci. Remote Sens., 2009, 47(8), 2847–2858.

22. Scholz, A., Ley, W., Dachwald, B., Miau, J. J., and Juang, J. C. Flight results of the COMPASS-1 picosatellite mission. Acta Astronaut., 2010, 67, 1289–1298.

23. Bridges, C., Kenyon, S., Underwood, C., and Lappas, V. STRaND-1: the world’s first smartphone nanosatellite. In 2nd International Conference on Space Technology, 2011, 1–3.

24. Khurshid, O., Tikka, T., Praks, J., and Hallikainen, M. Accommodating the plasma brake experiment onboard the Aalto-1 satellite. Proc. Estonian Acad. Sci., 2014, 63(2S), 258–266.

25. Janhunen, P. and Sandroos, A. Simulation study of solar wind push on a charged wire: basis of solar wind electric sail propulsion. Ann. Geophys., 2007, 25, 755–767.

26. Janhunen, P., Toivanen, P. K., Polkko, J., Merikallio, S., Salminen, P., Haeggström, E. et al. Electric solar wind sail: toward test missions. Rev. Sci. Instrum., 2010, 81, 111301:1–11.

27. Janhunen, P., Toivanen, P., Envall, J., Merikallio, S., Montesanti, G., del Amo, J. G. et al. Overview of electric solar wind sail applications. Proc. Estonian Acad. Sci., 2014, 63(2S), 267–278.

28. Vinther, K., Jensen, K. F., Larsen, J. A., and Wiśniewski, R. Inexpensive CubeSat attitude estimation using quaternions and unscented Kalman filtering. Automatic Control in Aerospace, 2011, 4(1).

29. Lätt, S., Slavinskis, A., Ilbis, E., Kvell, U., Voormansik, K., Kulu, E. et al. ESTCube-1 nanosatellite for electric solar wind sail in-orbit technology demonstration. Proc. Estonian Acad. Sci., 2014, 63(2S), 200–209.

30. Slavinskis, A., Kvell, U., Kulu, E., Sünter, I., Kuuste, H., Lätt, S. et al. High spin rate magnetic controller for nanosatellites. Acta Astronaut., 2014, 95, 218–226.

31. Laizans, K., Sünter, I., Zalite, K., Kuuste, H., Valgur, M., Tarbe, K. et al. Design of the fault tolerant command and data handling subsystem for ESTCube-1. Proc. Estonian Acad. Sci., 2014, 63(2S), 222–231.

32. Pajusalu, M., Rantsus, R., Pelakauskas, M., Leitu, A., Ilbis, E., Kalde, J. et al. Design of the electrical power system for the ESTCube-1 satellite. Latv. J. Phys. Tech. Sci., 2012, 49(3), 16–24.

33. Pajusalu, M., Ilbis, E., Ilves, T., Veske, M., Kalde, J., Lillmaa, H. et al. Design and pre-flight testing of the electrical power system for the ESTCube-1 nanosatellite. Proc. Estonian Acad. Sci., 2014, 63(2S), 232–241.

34. Hamamatsu S3931 Product Specification.

35. Honeywell HMC5883L Product Specification.

36. Invensense ITG-3200 Product Specification.

37. Amini, R., Larsen, J. A., Izadi-Zamanabadi, R., and Bhanderi, D. D. V. Design and implementation of a space environment simulation toolbox for small satellites. In 56th International Astronautical Congress. Fukuoka, 2005, 9, 6207–6213.

38. Jensen, K. F. and Vinther, K. Attitude Determination and Control System for AAUSAT3. Master thesis. Aalborg University, 2010.

39. Finlay, C. C., Maus, S., Beggan, C. D., Bondar, T. N., Chambodut, A., Chernova, T. A. et al. International Geomagnetic Reference Field: the eleventh generation. Geophys. J. Int., 2010, 183(3), 1216–1230.

40. de Ruiter, A. A fault-tolerant magnetic spin stabilizing controller for the JC2Sat-FF mission. Acta Astronaut., 2011, 68, 160–171.


Back to Issue