eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2021): 1.024
Nanosatellite orbit control using MEMS cold gas thrusters; pp. 279–285
PDF | doi: 10.3176/proc.2014.2S.09

Urmas Kvell, Marit Puusepp, Franz Kaminski, Jaan-Eerik Past, Kristoffer Palmer, Tor-Arne Grönland, Mart Noorma

We introduce nanosatellite orbit control using a novel miniaturized cold gas propulsion module based on microelectromechanical systems (MEMS) technology. Firstly, the design and characteristics of the propulsion module suitable for CubeSat class nanosatellites are described. Secondly, mission analyses for in-orbit validation of the propulsion module on a 2-unit CubeSat in 300 km low Earth orbit are presented. The MEMS cold gas propulsion module with 10 cm ´ 10 cm ´ 3 cm dimensions and 220 g mass is specifically designed for use in CubeSats. In baseline configuration with a tank for 60 g of butane under 2 to 5 bar pressure, it can provide up to 15 m/s delta-V capability for a 2.66 kg satellite. The module includes four individually controllable thrusters with proportional thrust regulation and closed loop control; maximum thrust is 1 mN per thruster with 5 mN thrust resolution. The fully operational satellite with active orbital control is capable of accommodating a 0.64 kg and 10 cm ´ 10 cm ´ 7 cm additional payload. The analysed mission scenarios have potential for different Earth observation applications. Natural deorbiting, controlled orbit lowering, controlled orbit raising, and orbit keeping at 300 km altitude are simulated. Simulations indicate that the natural orbit lifetime can be extended from 63 days to 193 days with the baseline propulsion module and satellite altitude can be increased to 348 km or lowered to 257 km. Orbit keeping at 300 km is possible for up to 76 days; proportional thrust control could provide a further increase to 204 days.



  1. Selva, D. and Krejci, D. A survey and assessment of the capabilities of Cubesats for Earth observation. Acta Astronaut., 2012, 74, 50–68.

  2. Woellert, K., Ehrenfreund, P., Ricco, A. J., and Hertzfeld, H. Cubesats: cost-effective science and technology platforms for emerging and developing nations. Adv. Space Res., 2011, 47(4), 663–684.

  3. Pajusalu, M., Ilbis, E., Ilves, T., Veske, M., Kalde, J., Lillmaa, H. et al. Design and pre-flight testing of the electrical power system for the ESTCube-1 nanosatellite. Proc. Estonian Acad. Sci., 2014, 63(2S), 232–241.

  4. Slavinskis, A., Kulu, E., Viru, J., Valner, R., Ehrpais, H., Uiboupin, T. et al. Attitude determination and control for centrifugal tether deployment on the ESTCube-1 nanosatellite. Proc. Estonian Acad. Sci., 2014, 63(2S), 242–249.

  5. Sarda, K., Eagleson, S., Caillibot, E., Grant, C., Kekez, D., Pranajaya, F., and Zee, R. E. Canadian advanced nanospace experiment 2: Scientific and technological innovation on a three-kilogram satellite. Acta Astronaut., 2006, 59, 236–245.

  6. Lappas, V., Adeli, N., Visagie, L., Fernandez, J., Theodorou, T., Steyn, W. et al. CubeSail: a low cost CubeSat based solar sail demonstration mission. Adv. Space Res., 2011, 48, 1890–1901.

  7. Gill, E., Sundaramoorthy, P., Bouwmeester, J., Zandbergen, B., and Reinhard, R. Formation flying within a constellation of nano-satellites: the QB50 mission. Acta Astronaut., 2013, 82(1), 110–117.

  8. Friis-Christensen, E., Luhr, H., and Hulot, G. Swarm: a constellation to study the Earth’s magnetic field. Earth Planets Space, 2006, 58(4), 351–358.

  9. Gill, E., Maessen, D., Laan, E., Kraft, S., and Zheng, G. Atmospheric aerosol characterization with the Dutch–Chinese FAST formation flying mission. Acta Astronaut., 2010, 66(7–8), 1044–1051.

10. Albertella, A., Migliaccio, F., and Sanso, F. GOCE: the Earth gravity field by space gradiometry. Celest. Mech. Dyn. Astr., 2002, 83(1–4), 1–15.

11. Lozano, P., Martınez-Sánchez, M., and Lopez-Urdiales, J. M. Electrospray emission from nonwetting flat dielectric surfaces. J. Colloid Interf. Sci., 2004, 276(2), 392–399.

12. Patel, K. D., Bartsch, M. S., McCrink, M. H., Olsen, J. S., Mosier, B. P., and Crocker, R. W. Electrokinetic pumping of liquid propellants for small satellite microthruster applications. Sensor. Actuat. B-Chem., 2008, 132, 461–470.

13. Johnson, L., Whorton, M., Heaton, A., Pinson, R., Laue, G., and Adams, C. NanoSail-D: a solar sail demonstration mission. Acta Astronaut., 2011, 68, 571–575.

14. Janhunen, P. Electrostatic plasma brake for deorbiting a satellite. J. Propul. Power, 2010, 26, 370–372.

15. Miller, D., Saenz-Otero, A., Wertz, J., Chen, A., Berkowski, G., Brodel, C. et al. SPHERES: a testbed for long duration satellite formation flying in micro-gravity conditions. In AAS/AIAA Space Flight Mechanics Meeting. Clearwater, 2000, AAS 00-110.

16. Grönland, T., Rangsten, P., Nese, M., and Lang, M. Miniaturization of components and systems for space using MEMS-technology. Acta Astronaut., 2007, 61(1–6), 228–233.

17. Grm, A., Grönland, T., and Rodic, T. Numerical analysis of cold gas micro propulsion system for micro and nano satellites. Eng. Computation., 2011, 28(2), 184–195.

18. Grönland, T., Johansson, H., Jonsson, K., Bejhed, J., and Rangsten, P. MEMS makes a difference in satellite propulsion. In Proceedings from the Small Satellite Systems and Services Conference. Portoroz, 2012.

19. Lätt, S., Slavinskis, A., Ilbis, E., Kvell, U., Voormansik, K., Kulu, E. et al. ESTCube-1 nanosatellite for electric solar wind sail in-orbit technology demonstration. Proc. Estonian Acad. Sci., 2014, 63(2S), 200–209.

20. CubeSat Design Specification Rev. 12. The CubeSat Program, Cal Poly SLO. California, 2009.

21. Laizans, K., Sünter, I., Zalite, K., Kuuste, H., Valgur, M., Tarbe, K. et al. Design of the fault tolerant command and data handling subsystem for ESTCube-1. Proc. Estonian Acad. Sci., 2014, 63(2S), 222–231.

22. Kuuste, H., Eenmäe, T., Allik, V., Agu, A., Vendt, R., Ansko, I. et al. Imaging system for nanosatellite proximity operations. Proc. Estonian Acad. Sci., 2014, 63(2S), 250–257.

23. Wermuth, M., Hauschild, A., Montenbruck, O., and Kahle, R. TerraSAR-X precise orbit determination with real-time GPS ephemerides. Adv. Space Res., 2012, 50, 549–559.

24. Chiaradia, A. P. M., Kuga, H. K., and Prado, A. F. B. A. Single frequency GPS measurements in real-time artificial satellite orbit determination. Acta Astronaut., 2003, 53, 123–133.

25. D’Amico, S., Ardaens, J. S., and De Florio, S. Autonomous formation flying based on GPS – PRISMA flight results. Acta Astronaut., 2012, 82(1), 69–79.

26. Hughes, S. P. General Mission Analysis Tool (GMAT). NASA Technical Reports. Greenbelt, 2007.

27. Hughes, S. P. General Mission Analysis Tool (GMAT) Mathematical Specifications. NASA Technical Reports. Greenbelt, 2012.

28. Hedin, A. E. Neutral Atmosphere Empirical Model from the surface to lower exosphere MSIS90. J. Geophys. Res., 1991, 96, 1159–1172.

29. Nerem, R. S., Lerch, F. J., Marshall, J. A., Pavlis, E. C., Putney, B. H., Tapley, B. D. et al. Gravity model development for TOPEX/POSEIDON: Joint Gravity Models 1 and 2. J. Geophys. Res-Oceans., 1994, 99(C12), 24421–24447.


Back to Issue