ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Linearization by input–output injections on homogeneous time scales; pp. 387–397

Full article in PDF format | doi: 10.3176/proc.2014.4.04

Authors
Monika Ciulkin, Vadim Kaparin, Ülle Kotta, Ewa Pawłuszewicz

Abstract

The problem of linearization by input–output (i/o) injections is addressed for nonlinear single-input single-output systems, defined on a homogeneous time scale. The paper provides conditions for the existence of a state transformation, bringing state equations into the observer form, which is linear up to some nonlinear input- and output-dependent functions, called i/o injections. These conditions are based on differential one-forms, associated with the i/o equation of the system.


References

 

  1. Aranda-Bricaire, E. and Moog, C. H. Linearization of discrete-time systems by exogenous dynamic feedback. Automatica, 2008, 44(7), 1707–1717.
http://dx.doi.org/10.1016/j.automatica.2007.10.030

  2. Bartosiewicz, Z. and Pawłuszewicz, E. Realizations of nonlinear control systems on time scales. IEEE Trans. Autom. Contr., 2008, 53(2), 571–575.
http://dx.doi.org/10.1109/TAC.2007.914243

  3. Bartosiewicz, Z. and Pawłuszewicz, E. External dynamical equivalence of time-varying nonlinear control systems on time scales. Int. J. Contr., 2011, 84(5), 961–968.
http://dx.doi.org/10.1080/00207179.2011.584351

  4. Bartosiewicz, Z. and Piotrowska, E. On stabilisability of nonlinear systems on time scales. Int. J. Contr., 2013, 86(1), 139–145.
http://dx.doi.org/10.1080/00207179.2012.721563

  5. Bartosiewicz, Z., Kotta, Ü., Pawłuszewicz, E., and Wyrwas, M. Algebraic formalism of differential one-forms for nonlinear control systems on time scales. Proc. Estonian Acad. Sci. Phys. Math., 2007, 56(3), 264–282.

  6. Bartosiewicz, Z., Kotta, Ü., Pawłuszewicz, E., and Wyrwas, M. Control systems on regular time scales and their differential rings. Math. Control Signals Syst., 2011, 22(3), 185–201.
http://dx.doi.org/10.1007/s00498-011-0058-7

  7. Bartosiewicz, Z., Kotta, Ü., Pawłuszewicz, E., Tõnso, M., and Wyrwas, M. Algebraic formalism of differential $p$-forms and vector fields for nonlinear control systems on homogeneous time scales. Proc. Estonian Acad. Sci., 2013, 62(4), 215–226.
http://dx.doi.org/10.3176/proc.2013.4.02

  8. Belikov, J., Kotta, Ü., and Tõnso, M. NLControl: Symbolic package for study of nonlinear control systems. In IEEE Multi-Conference on Systems and Control, Hyderabad, India, August 28–30, 2013, 322–327.

  9. Bohner, M. and Peterson, A. Dynamic Equations on Time Scales. Birkhäuser, Boston, MA, USA, 2001.
http://dx.doi.org/10.1007/978-1-4612-0201-1

10. Casagrande, D., Kotta, Ü., Tõnso, M., and Wyrwas, M. Transfer equivalence and realization of nonlinear input-output delta-differential equations on homogeneous time scales. IEEE Trans. Autom. Contr., 2010, 55(11), 2601–2606.
http://dx.doi.org/10.1109/TAC.2010.2060251

11. Conte, G., Moog, C. H., and Perdon, A. M. Algebraic Methods for Nonlinear Control Systems. Theory and Applications. Springer-Verlag, London, UK, 2nd edition, 2007.
http://dx.doi.org/10.1007/978-1-84628-595-0

12. Fliess, M. Reversible linear and nonlinear discrete-time dynamics. IEEE Trans. Autom. Contr., 1992, 37(8), 1144–1153.
http://dx.doi.org/10.1109/9.151095

13. Funahashi, Y. An observable canonical form of discrete-time bilinear systems. IEEE Trans. Autom. Contr., 1979, 24(5), 802–803.
http://dx.doi.org/10.1109/TAC.1979.1102154

14. Goodwin, G. C., Graebe, S. F., and Salgado, M. E. Control System Design. Prentice Hall, Upper Saddle River, NJ, USA, 2001.

15. Huijberts, H. J. C. On existence of extended observers for nonlinear discrete-time systems. In New Directions in Nonlinear Observer Design (Nijmeijer, H. and Fossen, T. I., eds), Lecture Notes Control Inform. Sci., 1999, 244, 73–92.

16. Kaparin, V. and Kotta, Ü. Necessary and sufficient conditions in terms of differential-forms for linearization of the state equations up to input-output injections. In UKACC International Conference on CONTROL, Coventry, UK, 2010, 507–511.

17. Kaparin, V. and Kotta, Ü. Theorem on the differentiation of a composite function with a vector argument. Proc. Estonian Acad. Sci., 2010, 59(3), 195–200.
http://dx.doi.org/10.3176/proc.2010.3.01

18. Kaparin, V. and Kotta, Ü., Shumsky, A. Ye., and Zhirabok, A. N. A note on the relationship between single- and multi-experiment observability for discrete-time nonlinear control systems. Proc. Estonian Acad. Sci., 2011, 60(3), 174–178.
http://dx.doi.org/10.3176/proc.2011.3.05

19. Kaparin, V., Kotta, Ü., and Wyrwas, M. Observable space of nonlinear control system on a homogeneous time scale. Proc. Estonian Acad. Sci., 2014, 63(1), 11–25.
http://dx.doi.org/10.3176/proc.2014.1.04

20. Kotta, Ü. Decomposition of discrete-time nonlinear control systems. Proc. Estonian Acad. Sci. Phys. Math., 2005, 54(3), 154–161.

21. Kotta, Ü., Bartosiewicz, Z., Pawłuszewicz, E., and Wyrwas, M. Irreducibility, reduction and transfer equivalence of nonlinear input-output equations on homogeneous time scales. Syst. & Contr. Lett., 2009, 58(9), 646–651.
http://dx.doi.org/10.1016/j.sysconle.2009.04.006

22. Kotta, Ü., Rehák, B., and Wyrwas, M. On submersivity assumption for nonlinear control systems on homogeneous time scales. Proc. Estonian Acad. Sci., 2011, 60(1), 25–37.
http://dx.doi.org/10.3176/proc.2011.1.03

23. Kotta, Ü. and Schlacher, K. Possible non-integrability of observable space for discrete-time nonlinear control systems. In The 17th IFAC World Congress, Seoul, Korea, 2008, 9852–9856.

24. Krener, A. J. and Respondek, W. Nonlinear observers with linearizable error dynamics. SIAM J. Contr. Optim., 1985, 23(2), 197–216.
http://dx.doi.org/10.1137/0323016

25. Middleton, R. H. and Goodwin, G. C. Digital Control and Estimation: A Unified Approach. Prentice Hall, Englewood Cliffs, NJ, USA, 1990.

26. Mullari, T. and Kotta, Ü. Transformation the nonlinear system into the observer form: simplification and extension. European J. Contr., 2009, 15(2), 177–183.
http://dx.doi.org/10.3166/ejc.15.177-183

27. Respondek, W., Pogromsky, A., and Nijmeijer, H. Time scaling for observer design with linearizable error dynamics. Automatica, 2004, 40(2), 277–285.
http://dx.doi.org/10.1016/j.automatica.2003.09.012

 


Back to Issue