ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

On endomorphisms of groups of order 32 with maximal subgroups C4 x C2 x C2; pp. 105–120

Full article in PDF format | doi: 10.3176/proc.2014.2.01

Authors
Piret Puusemp, Peeter Puusemp

Abstract

It is proved that each group of order 32, which has a maximal subgroup isomorphic to C4 x C2 x C2, is determined by its endomorphism semigroup in the class of all groups.


References

  1. Alperin, J. L. Groups with finitely many automorphisms. Pacific J. Math., 1962, 12, 1–5.
http://dx.doi.org/10.2140/pjm.1962.12.1

  2. Corner, A. L. S. Every countable reduced torsion-free ring is an endomorphism ring. Proc. London Math. Soc., 1963, 13, 687–710.
http://dx.doi.org/10.1112/plms/s3-13.1.687

  3. Gramushnjak, T. and Puusemp, P. A characterization of a class of groups of order 32 by their endomorphism semigroups. Algebras, Groups, Geom., 2005, 22, 387–412.

  4. Gramushnjak, T. and Puusemp, P. A characterization of a class of 2-groups by their endomorphism semigroups. In Generalized Lie Theory in Mathematics, Physics and Beyond (Silvestrov, S., Paal, E., Abramov, V., and Stolin, A., eds). Springer-Verlag, Berlin, 2009, 151–159.
http://dx.doi.org/10.1007/978-3-540-85332-9_14

  5. Hall, M., Jr. and Senior, J. K. The Groups of Order 2n, n £ 6. Macmillan, New York; Collier-Macmillan, London, 1964.

  6. Krylov, P. A., Mikhalev, A. V., and Tuganbaev, A. A. Endomorphism Rings of Abelian Groups. Kluwer Academic Publisher, Dordrecht, 2003.
http://dx.doi.org/10.1007/978-94-017-0345-1

  7. Puusemp, P. Idempotents of the endomorphism semigroups of groups. Acta Comment. Univ. Tartuensis, 1975, 366, 76–104 (in Russian).

  8. Puusemp, P. Endomorphism semigroups of generalized quaternion groups. Acta Comment. Univ. Tartuensis, 1976, 390, 84–103 (in Russian).

  9. Puusemp, P. On endomorphism semigroups of dihedral 2-groups and alternating group A4. Algebras, Groups, Geom., 1999, 16, 487–500.

10. Puusemp, P. A characterization of divisible and torsion Abelian groups by their endomorphism semigroups. Algebras, Groups, Geom., 1999, 16, 183–193.

11. Puusemp, P. Characterization of a semidirect product of groups by its endomorphism semigroup. In Proceedings of the International Conference on Semigroups, Braga, June 18–23, 1999 (Smith, P., Giraldes, E., and Martins, P., eds). World Scientific, 2000, 161–170.

12. Puusemp, P. Non-Abelian groups of order 16 and their endomorphism semigroups. J. Math. Sci., 2005, 131, 6098–6111.
http://dx.doi.org/10.1007/s10958-005-0463-x

13. Puusemp, P. Groups of order less than 32 and their endomorphism semigroups. J. Nonlinear Math. Phys., 2006, 13, Supplement, 93–101.
http://dx.doi.org/10.2991/jnmp.2006.13.s.11

14. Rotman, J. J. An Introduction to the Theory of Groups. Springer-Verlag, 1994.


Back to Issue