ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

A modification of the soft potential model of glasses; pp. 33–36

Full article in PDF format | doi: 10.3176/proc.2014.1.06

Authors
Jaak Kikas, Inna Rebane

Abstract

Replacement of the cubic term in the soft potential model of glasses with a linear one can be interpreted as an introduction of the internal pressure (coefficient of the linear term), additive to the applied external pressure. It makes the potential unique and removes the ambiguity, present in the conventional representation (different choices of the origin). Pressure-induced transformation of soft systems becomes in the new representation extremely simple – they evolve with the pressure along straight lines. The “sea-gull” distribution of the soft potential parameters transforms into a uniform one in these new variables.


References

  1. Zeller, R. C. and Pohl, R. O. Thermal conductivity and specific heat of noncrystalline solids. Phys. Rev. B, 1971, 4, 2029–2041.
http://dx.doi.org/10.1103/PhysRevB.4.2029

  2. Karpov, V. G., Klinger, M. I., and Ignat¢ev, F. N. Theory of low-temperature anomalies in thermal properties of amorphic structures. Sov. Phys. JETP, 1983, 57, 439–448.

  3. Il¢in, M. A., Karpov, V. G., and Parshin, D. A. Parameters of soft atomic potentials in glasses. Sov. Phys. JETP, 1987, 65, 165–168.

  4. Parshin, D. A. Model of soft potentials and universal properties of glasses. Phys. Solid State, 1994, 36, 991–1024.

  5. Karpov, V. G. and Parshin, D. A. Heat-conductivity of glasses at temperatures below the debye temperature. Sov. Phys. JETP, 1985, 61, 1308–1317.

  6. Buchenau, U., Galperin, Yu. M., Gurevich, V. L., and Schober, H. R. Anharmonic potentials and vibrational localization in glasses. Phys. Rev. B, 1991, 43, 5039–5045.
http://dx.doi.org/10.1103/PhysRevB.43.5039

  7. Karpov, V. G. and Grimsditch, M. Pressure-induced trans­formation in glasses. Phys. Rev. B, 1993, 48, 6941–6948.
http://dx.doi.org/10.1103/PhysRevB.48.6941

  8. Hizhnyakov, V., Laisaar, A., Kikas, J., Kuznetsov, An., Palm, V., and Suisalu, A. Transformation of soft localized modes in glasses under pressure. Phys. Rev. B, 2000, 62, 11296–11299.
http://dx.doi.org/10.1103/PhysRevB.62.11296

  9. Kikas, J., Suisalu, A., Kuznetsov, An., Laisaar, A., Takahashi, J., and Hizhnyakov, V. Pressure effects on relaxation in a polymer glass: a persistent spectral hole burning study. Opt. Spectrosc., 2005, 98, 675–680.
http://dx.doi.org/10.1134/1.1929052

10. Alexander, S. Amorphous solids: their structure, lattice dynamics and elasticity. Phys. Rep., 1998, 296, 65–236.
http://dx.doi.org/10.1016/S0370-1573(97)00069-0


Back to Issue