eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Comparison of the wear and frictional properties of Cu matrix composites prepared by pulsed electric current sintering; pp. 62–74

Full article in PDF format | doi: 10.3176/proc.2014.1.09

Riina Ritasalo, Maksim Antonov, Renno Veinthal, Simo-Pekka Hannula


Wear performance of Cu matrix composites prepared by pulsed electric current sintering (PECS) was evaluated by using non-lubricated sliding tests. The studied materials contained cuprite (Cu2O), alumina (Al2O3), titaniumdiboride (TiB2) or diamond dispersoids in a coarse-grained Cu (c-Cu), submicron-grained Cu (sm-Cu), or nano-grained Cu (nCu) matrix. PECS compacted matrix materials were used as references. The ball-on-flat tests showed strong dependence of the coefficient of friction (CoF), wear rate and wear mechanism on the counter ball material. Cr-steel balls led to high CoF (0.71–1.01) and high wear rate (1.3 x 10–5–5.7 x 10–3 mm3/Nm) depending on the test material and its reactivity with the counterpart. Cu-Cu2O yielded to lowest CoF and wear rate with a presence of oxidational and abrasive wear, whereas, Cu-Al2O3 and Cu-diamond suffered of adhesive wear leading to much higher wear rates. On the other hand, alumina ceramic counterpart led to a considerably lower CoF (0.39–0.92) and wear rate (1.4 x 10–7–6.1 x 10–6 [mm3/Nm]), and the test materials showed oxidational wear and material pile-up. Of the composites, Cu-diamond showed the lowest wear rate and Cu-Cu2O and Cu-diamond (5 nm) showed the lowest CoF against alumina. It is believed that the present work gives new insights for materials selection, e.g., in electronic connector parts.


  1. Groza, J. R. Heat-resistant dispersion-strengthened copper alloys. J. Mater. Eng. Perf., 1992, 1, 113–121.

  2. Powder Metallurgy: Copper and Copper Alloys. ASM Specialty Handbook, ASM International, 2001, 105–120.

  3. Peterson, M. B. A. and Winer, W. O. Wear Control Hand­book. ASME, 1980, p. 1358.

  4. Kumar, A. and Singh, S. Wear Property of Metal Matrix Composite. National Institute of Technology, Rour­kela, 2011.

  5. Eddine, W. Z., Matteazzi, P., and Celis, J.-P. Mechanical and tribological behavior of nanostructured copper-alumina cermets obtained by Pulsed Electric Current Sintering, Wear, 2013, 297, 762–773.

  6. Holmberg, K. and Matthews, A. Coatings Tribology; Properties, Mechanisms, Techniques and Applications in Surface Engineering (Briscoe, B., ed.). Tribology and Interface Engineering, Series 56, 2nd ed., 2009, p. 560.

  7. Caron, R. N. Copper: Alloying. In Encyclopedia of Materials: Science and Technology. Elsevier, 2nd ed., 2001, 1652–1660.

  8. Murty, Y. V. Electrical and electronic connectors: materials and technology. In Encyclopedia of Materials: Science and Technology. Elsevier, 2nd ed., 2001, 2483–2494.

  9. Kaczmar, J. W., Pietrzak, K., and Włosiński, W. The production and application of metal matrix composite materials. J. Mater. Process. Technol., 2000, 106, 58–67.

10. Nadkarni, A. V. and Klar, E. Dispersion strengthening of metals by internal oxidation, SCM Corporation, 1973. U.S. Patent 3,779,714.

11. Sullivan, J. L. Oxidational wear of the metals. (accessed 14.06.2013).

12. Han, Z., Lu, L., and Lu, K. Dry sliding tribological behavior of nanocrystalline and conventional poly­crystalline copper. Tribol. Lett., 2006, 21, 47–52.

13. Zhang, Y. S., Han, Z., Wang, K., and Lu, K. Friction and wear behaviors of nanocrystalline surface layer of pure copper. Wear, 2006, 260, 942–948.

14. Zhang, Y. S., Han, Z., and Lu, K. Fretting wear behavior of nanocrystalline surface layer of copper under dry condition. Wear, 2008, 265, 396–401.

15. Yao, B., Han, Z., Li, Y. S., Tao, N. R., and Lu, K. Dry sliding tribological properties of nanostructured copper subjected to dynamic plastic deformation. Wear, 2011, 271, 1609–1616.

16. Senouci, A., Zaidi, H., Frene, J., Bouchoucha, A., and Paulmier, D. Damage of surfaces in sliding electrical contact copper/steel. Appl. Surf. Sci., 1999, 144–145, 287–291.

17. Liang, H., Martin, J.-M., and Lee, R. Influence of oxides on friction during Cu CMP. J. Electronic Mater., 2001, 30, 391–395.

18. Bouchoucha, A., Chekroud, S., and Paulmier, D. Influence of the electrical sliding speed on friction and wear processes in an electrical contact copper-stainless steel. Appl. Surf. Sci., 2004, 223, 330–342.

19. Yum, Y. J., Lee, K. S., Kim, J. S., Kwon, Y. S., Chang, M. G., Kwon, D. H., and Sung, C. H. Mechanical properties of Cu-TiB2 nanocomposite by MA/SPS. In Proc. 9th Russian–Korean International Symposium on Science and Technology KORUS, 2005.

20. Zhan, Y., Zhang, G., and Zhuang, Y. Wear transitions in particulate reinforced copper matrix composites. Mater. Trans., 2004, 45, 2332–2338.

21. Sano, T., Murakoshi, Y., Takagi, H., Homma, T., Takeishi, H., and Mayuzumi, M. Characterization of diamond-dispersed Cu-matrix composites. Mater. Trans., 1996, 37, 1132–1137.

22. Hvizdoš, P. and Besterci, M. Effect of microstructure of Cu-Al2O3 composite on nano-hardness and wear para­meters. Chem. Listy, 2011, 105, 696–699.

23. Hvizdoš, P., Kulu, P., and Besterci, M. Tribological para­meters of copper-alumina composite. Key Eng. Mater., 2012, 527, 191–196.

24. Emge, A., Karthikeyan, S., Kim, H. J., and Rigney, D. A. The effect of sliding velocity on the tribological behavior of copper. Wear, 2007, 263, 614–618.

25. Sulek, W. and Jedynak, R. The effect of electroplated copper and zink coatings on friction conditions. Mater. Sci., 2003, 9, 258–261.

26. Zheng, R. G., Zhang, Z., Peng, X. T., and Wang, W. K. Dry sliding wear behavior of sintered copper-diamond composite fabricated by powder metallurgy. Adv. Mater. Res., 2010, 139–141, 335–339.

27. Tu, J. P., Rong, W., Guo, S. Y., and Yang, Y. Z. Dry sliding wear behavior of in situ Cu-TiB2 nanocomposites against medium carbon steel. Wear, 2003, 255, 832–835.

28. Moustafa, S. F., El-Badry, S. A., Sanad, A. M., and Kieback, B. Friction and wear of copper-graphite composites made with Cu-coated and uncoated graphite powders. Wear, 2002, 253, 699–710.

29. Trinh, P. V., Trung, T. B., Thang, N. B., Thang, B. H., Tinh, T. X., Quang, L. D., Phuong, D. D., and Minh, P. N. Calculation of the friction coefficient of Cu matrix composite reinforced by carbon nanotubes. Comp. Mater. Sci., 2010, 49, 239–241.

30. Orrù, R., Licheri, R., Locci, A. M., Cincotti, A., and Cao, G. Consolidation/synthesis of materials by electric current activated/assisted sintering. Mat. Sci. Eng. R, 2009, 63, 127–287.

31. Ritasalo, R., Kanerva, U., and Hannula, S.-P. Thermal stability of PECS-compacted Cu-composites. Key Eng. Mater., 2013, 527, 113–118.

32. Fathy, A., Shehata, F., Abdelhameed, M., and Elmahdy, M. Compressive and wear resistance of nano­metric alumina reinforced copper matrix composites. Mater. Design, 2012, 36, 100–107.

33. ISO 20808:2004(E). Fine ceramics – Determination of friction and wear characteristics of monolithic ceramics by ball-on-disk method. 2004.

34. Winzer, J., Weiler, L., Pouquet, J., and Rödel, J. Wear behavior of interpenetrating alumina-copper com­posites. Wear, 2011, 271, 2845–2851.

35. Sánchez-López, J. C., Abad, M. D., Justo, A., Gago, R., Endrino, J. L., Garcia-Luis, A., and Brizuela, M. Phase composition and tribomechanical properties of Ti-B-C nanocomposite coatings prepared by magnetron sputtering. J. Phys. D: Appl. Phys., 2012, 45, 375–401.

36. Murthy, T. S. R. Ch., Basu, B., Srivastava, A., Balasubramaniam, R., and Suri, A. K. Tribological properties of TiB2 and TiB2-MoSi2 ceramic composites. J. Eur. Ceram. Soc., 2006, 26, 1293–1300.

37. Wäsche, R., Klaffke, D., and Troczynski, T. Tribological performance of SiC and TiB2 against SiC and Al2O3 at low sliding speeds. Wear, 2004, 256, 695–704.

38. Luo, S. Y., Kuo, J. K., Tsai, T. J., and Dai, C. W. A study of the wear behavior of diamond like carbon films under the dry reciprocating sliding contact. Wear, 2001, 249, 800–807.

39. Gubarevich, A. V., Usuba, S., Kakudate, Y., Tanaka, A., and Odawara, O. Frictional properties of diamond and fullerene nanoparticles sprayed by a high-velocity argon gas on stainless steel substrate. Diamond Rel. Mater., 2005, 14, 1549–1555.

40. Hollman, P., Wänstrand, O., and Hogmark, S. Friction properties of smooth nanocrystalline diamond coat­ings. Diamond Rel. Mater., 1998, 7, 1471–1477.

41. Paul, E., Evans, C. J., Mangamelli, A., McGlauflin, M. L., and Polvani, R. S. Chemical aspects of tool wear in single point diamond turning. Prec. Eng., 1996, 18, 4–19.

42. Lane, B. M., Shi, M., Dow, T. A., and Scattergood, R. Diamond tool wear when machining Al6061 and 1215 steel. Wear, 2010, 268, 1434–1441.

43. Panda, K., Kumar, N., Sankaran, K. J., Panigrahi, B. K., Dash, S., Chen, H.-C., Lin, I.-N., Tai, N.-H., and Tyagi, A. K. Tribological properties of ultranano­crystalline diamond and diamond nanorod films. Surf. Coat. Tech., 2012, 207, 535–545.

44. Zhou, G., Ding, H., Zhang, Y., Hui, D., and Liu, A. Fretting behavior of nano-Al2O3 reinforced copper-matrix composites prepared by coprecipitation. Metallurgija, 2009, 15, 169–179.

45. Ritasalo, R., Kanerva, U., Ge, Y., and Hannula, S.-P. Mechanical and thermal properties of pulsed electric current sintered (PECS) Cu-diamond compacts. Metall. Mater. Trans. B, 2013, 1–8, Published on-line.

Back to Issue