eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Tone bursts in exponentially graded materials characterized by parametric plots; pp. 258–266

Full article in PDF format | doi: 10.3176/proc.2013.4.06

Arvi Ravasoo


The propagation and reflection of the ultrasonic tone burst in the strongly inhomogeneous exponentially graded material are studied. Deformations of a specimen with two parallel boundaries are described by the five constant nonlinear theory of elasticity. The one-dimensional problem is considered. The influence of the variation in material properties on the profile of boundary oscillations is clarified by parametric plots. The obtained results may be useful in the ultrasonic non\-destructive material characterization.


  1. Hirano, T., Teraki, J., and Yamada, T. On the design of functionally graded materials. In Proceedings of the First International Symposium on Functionally Graded Materials (Yamanouochi, M., Koizumi, M., Hirai, T., and Shiota, I., eds). Sendai, Japan, 1990, 5–10.

  2. Suresh, S. and Mortensen, A. Fundamentals of Functionally Graded Materials}. IOC Communications Ltd, London, 1998.

  3. Miyamoto, Y., Kaysser, W. A., Rabin, B. H., Kavasaki, A., and Ford, R. G. Functionally Graded Materials: Design, Processing, and Applications. Kluwer Academic Publishers, London, 1999.

  4. Gillia, O. and Caillens, B. Fabrication of a material with composition gradient for metal/ceramic assembly. Powder Technol., 2011, 208, 355–366.

  5. Cannillo, V., Lusvarghi, L., Siligardi, C., and Sola, A. Characterization of glass–alumina functionally graded coatings obtained by plasma spraying. J. Eur. Ceram. Soc., 2007, 27, 1935–1943.

  6. Tsukamoto, H. Design of functionally graded thermal barrier coatings based on a nonlinear micromechanical approach. Comp. Mater. Sci., 2010, 50, 429–436.

  7. Sioh, E. L. Functional graded material with nano-structured coating for protection. Int. J. Mater. Prod. Tec., 2010, 39(1/2), 136–147.

  8. Bland, D. R. Nonlinear Dynamic Elasticity. Waltham, Massachusetts, 1969.

  9. Ravasoo, A. Nonlinear waves in characterization of inhomogeneous elastic material. Mech. Mater., 1999, 31, 205–213.

10. Chiu, T.-C. and Erdogan, F. One-dimensional wave propagation in a functionally graded elastic medium. J. Sound Vib., 1999, 222, 453–487.

11. Berezovski, A., Engelbrecht, J., and Maugin, G. A. Numerical Simulation of Waves and Fronts in Inhomogeneous Solids. World Scientific Series A 62. New Jersey, 2008.

12. Samadhiya, R., Mukherjee, A., and Schmauder, S. Characterization of discretely graded materials using acoustic wave propagation. Comp. Mater. Sci., 2006, 37, 20–28.

13. Hauk, V. Structural and Residual Stress Analysis by Nondestructive Methods. Elsevier, Amsterdam, 1997.

14. Truesdell, C. and Noll, W. The non-linear field theories of mechanics. In Handbuch der Physik, III/3. Springer, Berlin, 1965.

15. Braunbrück, A. and Ravasoo, A. Resonance phenomenon of wave interaction in inhomogeneous solids. Proc. Estonian Acad. Sci. Phys. Math., 2007, 56, 108–115.

16. Boonsang, S. and Dewhurst, R. J. A sensitive electromagnetic acoustic transducer for picometer-scale ultrasonic displacement measurements. Sensors and Actuators, 2006, A127, 345–354.

Back to Issue