ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Development and application of a phytoplankton primary production model for well-mixed lakes; pp. 267–276

Full article in PDF format | doi: 10.3176/proc.2013.4.07

Authors
Tuuli Kauer, Helgi Arst, Tiina Nõges, Georg-Egon Arst

Abstract

For estimations of the ecological state of a lake and its future trends, data on seasonal and long-term variations of primary production are most necessary. The methods of in situ measurements of production are time consuming, rather complicated, and very expensive. Bio-optical model calculations provide a good alternative here. A semi-empirical model for estimating phytoplankton primary production (Arst et al., 2008, Aquatic Biology, Vol. 3, No. 1, pp. 19–30) allows calculating the vertical profiles and areal (integrated over water column) values of primary production using chlorophyll a concentration, incident irradiance, and light attenuation coefficient in the water. In the present study this model was developed further by elaborating its automated version. It enables performing rapid and greatly replicated estimations of the circumstantial variability of phytoplankton primary production at hourly intervals from morning to evening and as daily and monthly sums based on a table of initial parameters and depths. For demonstrating the practical application of the model we calculated primary production in two large eutrophic North-European lakes (Võrtsjärv and Peipsi), using a database collected during four warm months in 2009 (123 days in both lakes).


References

Arst, H. 2003. Optical Properties and Remote Sensing of Multicomponental Water Bodies. Springer & Praxis-Publishing, Chichester, UK.

Arst, H., Erm, A., Reinart, A., Sipelgas, L., and Herlevi, A. 2002. Calculating irradiance penetration into water bodies from the measured beam attenuation coefficient II: Application of improved model to different types of lakes. Nord. Hydrol., 33(2–3), 207–226.

Arst, H., Nõges, T., Nõges, P., and Paavel, B. 2008a. In situ measurements and model calculations of primary production in turbid waters. Aquat. Biol., 3, 19–30.
http://dx.doi.org/10.3354/ab00059

Arst, H., Erm, A., Herlevi, A., Kutser, T., Leppäranta, M., and Reinart, A. 2008b. Optical properties of boreal lake waters in Finland and Estonia. Bor. Environ. Res., 13, 133–158.

Arst, H., Nõges, T., Nõges, P., and Paavel, B. 2008c. Relations of phytoplankton in situ primary production, chloro­phyll and underwater irradiance in turbid lakes. Hydrobiologia, 599, 169–176.
http://dx.doi.org/10.1007/s10750-007-9213-z

Arst, H., Nõges, P., Nõges, T., Kauer, T., and Arst, G.-E. 2012. Quantification of a primary production model using two versions of the spectral distribution of the phytoplankton absorption coefficient. Environ. Model. Assess., 17, 431–440.
http://dx.doi.org/10.1007/s10666-011-9305-z

Berman, T. 1976. Light penetrance in Lake Kinneret. Hydro­biologia, 49, 41–48.
http://dx.doi.org/10.1007/BF00016166

Berman, T. and Pollingher, U. 1974. Annual and seasonal variations of phytoplankton, chlorophyll, and photo­synthesis in Lake Kinneret. Limnol. Oceanogr., 19(1), 31–54.
http://dx.doi.org/10.4319/lo.1974.19.1.0031

Bricaud, A., Babin, M., Morel, A., and Claustre, H. 1995. Variability in the chlorophyll-specific absorption coef­fi­cients of natural phytoplankton: analysis and para­metrization. J. Geophys. Res., 100(C7), 13321–13332.
http://dx.doi.org/10.1029/95JC00463

Forget, M.-H., Sathyendranath, S., Platt, T., Pommier, J., Vis, C., Kyewalyanga, M., and Hudson, C. 2007. Extrac­tion of photosynthesis–irradiance parameters from phytoplankton production data: demonstration in various aquatic systems. J. Plankt. Res., 29, 249–262.
http://dx.doi.org/10.1093/plankt/fbm012

Jaani, A. 2001. The location, size and general characterization of Lake Peipsi and its catchment area. In Lake Peipsi. Meteorology, Hydrology, Hydrochemistry (Nõges, T., ed.), pp. 10–17. Sulemees Publishers, Tartu.

Joniak, T., Gołdyn, R., and Kozak, A. 2003. The primary production of phytoplankton in the restored Maltañski Reservoir in Poland. Hydrobiologia, 506–509, 311–316.
http://dx.doi.org/10.1023/B:HYDR.0000008584.22153.86

Kauer, T. 2012. Estimation of the Underwater Light Field and Phytoplankton Primary Production in Different Esto­nian Lakes. Tallinn University, Dissertations on Natural Sciences, 29. Tallinn University Press.

Kirk, J. T. O. 1994. Light and Photosynthesis in Aquatic Eco­systems. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511623370

Kondratyev, K. Ya. 1965. Radiation in the Atmosphere. Academic Press, New York, London.

Laas, A., Nõges, P., Kõiv, T., and Nõges, T. 2012. High frequency metabolism study in a large and shallow temperate lake revealed seasonal switching between net autotrophy and net heterotrophy. Hydrobiologia, 694, 57–74.
http://dx.doi.org/10.1007/s10750-012-1131-z

Lancelot, C. and Mathot, S. 1986. Biochemical fractionation of primary production by phytoplankton in Belgian coastal waters during short- and long-term incubations with 14C-bicarbonate. Mar. Biol., 86, 219–226.
http://dx.doi.org/10.1007/BF00397507

Lorenzen, C. J. 1967. Determination of chlorophyll and phaeo­pigments; spectrophotometric equations. Limnol. Oceanogr., 12(2), 343–346.
http://dx.doi.org/10.4319/lo.1967.12.2.0343

Mäemets, A. 1977. Eesti NSV järved ja nende kaitse. Valgus, Tallinn (in Estonian).

Møller Jensen, L. 1985. 14C-labelling patterns of phyto­plankton: specific activity of different product pools. J. Plankt. Res., 7, 643–652.
http://dx.doi.org/10.1093/plankt/7.5.643

Morel, A. and Bricaud, A. 1981. Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton. Deep Sea Res., 28, 1375–1393.
http://dx.doi.org/10.1016/0198-0149(81)90039-X

Nõges, T. and Kangro, K. 2005. Primary production of phytoplankton in a strongly stratified temperate lake. Hydrobiologia, 547, 105–122.
http://dx.doi.org/10.1007/s10750-005-4152-z

Nõges, T. and Nõges, P. 1998. Primary production of Lake Võrtsjärv. Limnologica, 29, 29–40.

Nõges, P. and Nõges, T. 2006. Indicators and criteria to assess ecological status of large shallow temperate polymictic lakes Peipsi (Estonia/Russia) and Võrtsjärv (Estonia). Bor. Environ. Res., 11, 67–80.

Nõges, P., Haberman, J., Tammert, H., Tuvikene, A., and Ott, I. 1993. Estimation of the state of three Estonian small lakes on the basis of bioproductivity. Proc. Estonian Acad. Sci. Biol. Ecol., 3, 65–84.

Nõges, T., Arst, H., Laas, A., Kauer, T., Nõges, P., and Toming, K. 2011. Reconstructed long-term series of phytoplankton primary production of a large shallow temperate lake: the basis to assess the carbon balance and its climate sensitivity. Hydrobiologia, 667, 205–222.
http://dx.doi.org/10.1007/s10750-011-0647-y

Paavel, B., Arst, H., and Reinart, A. 2008. Variability of bio-optical parameters in two North-European large lakes. Hydrobiologia, 599, 201–211.
http://dx.doi.org/10.1007/s10750-007-9200-4

Reinart, A. and Herlevi, A. 1999. Diffuse attenuation coef­ficient in some Estonian and Finnish lakes. Proc. Estonian Acad. Sci. Biol. Ecol., 48, 267–283.

Reinart, A. and Nõges, P. 2004. Light conditions in Lake Võrtsjärv. In Lake Võrtsjärv (Haberman, J., Pihu, E., and Raukas, A., eds), pp. 141–149. Estonian Encyclopaedia Publishers, Tallinn.

Robson, B. J. 2005. Representing the effects of diurnal variations in light on primary production on a seasonal time-scale. Ecol. Model., 186, 358–365.
http://dx.doi.org/10.1016/j.ecolmodel.2005.01.033

Smith, R. C., Prezelin, B. B., Bidigare, R. R., and Baker, K. S. 1989. Bio-optical modeling of photosynthetic production in coastal waters. Limnol. Oceanogr., 34, 1524–1544.
http://dx.doi.org/10.4319/lo.1989.34.8.1524

Sosik, H. M. 1996. Bio-optical modelling of primary produc­tion: consequences of variability in quantum yield and specific absorption. Mar. Ecol. Prog. Ser., 143, 225–238.
http://dx.doi.org/10.3354/meps143225

Steeman Nielsen, E. 1952. The use of radioactive carbon (14C) for measuring primary production in the sea. J. Cons. Int. Explor. Mer, 18, 117–140.

Wetzel, R. G. 2001. Limnology. Lake and River Ecosystems. 3rd edn. Elsevier Academic Press, San Diego.

Yacobi, Y. Z. 2003. Seasonal variation in pigmentation of the dinoflagellate Peridinium gatunense (Dinophyceae) in Lake Kinneret, Israel. Freshwater Biol., 48, 1850–1858.
http://dx.doi.org/10.1046/j.1365-2427.2003.01135.x

Yacobi, Y. Z. 2006. Temporal and vertical variation of chlorophyll a concentration, phytoplankton photo­synthetic activity and light attenuation in Lake Kinneret: possibilities and limitations for simulating by remote sensing. J. Plankt. Res., 28, 725–736.
http://dx.doi.org/10.1093/plankt/fbl004

Yacobi, Y. Z., Pollingher, U., Gonen, Y., Gerhardt, V., and Sukenik, A. 1996. HPLC analysis of phytoplankton pigments from Lake Kinneret with special reference to the bloom-forming dinoflagellate Peridinium gatunense (Dinophyceae) and chlorophyll degradation products. J. Plankt. Res., 18, 1781–1796.
http://dx.doi.org/10.1093/plankt/18.10.1781

Yoshida, T., Sekino, T., Genkai-Kato, M., Logacheva, N. P., Bondarenko, N. A., Kawabata, Z. et al. 2003. Seasonal dynamics of primary production in the pelagic zone of southern Lake Baikal. Limnology, 4, 53–62.
http://dx.doi.org/10.1007/s10201-002-0089-3


Back to Issue