eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Numerical simulation of grid-generated turbulent particulate flow by three-dimensional Reynolds stress; pp. 161–174

Full article in PDF format | doi: 10.3176/proc.2013.3.02

Alexander Kartushinsky, Ylo Rudi, David Stock, Medhat Hussainov, Igor Shcheglov, Sergei Tisler, Alexander Shablinsky


A three-dimensional (3D) Reynolds stress turbulence model based on 3D Reynolds-averaged Navier–Stokes equations has been elaborated for grid-generated turbulence in particulate downward flow arranged in the channel domain of the square cross section. The model presented considers both the enhancement and attenuation of turbulence by means of the additional terms of the transport equations of the normal Reynolds stress components. It allows us to carry out calculations covering the long distance of the channel length without using algebraic assumptions for various components of the Reynolds stress. The results obtained show the effects of particles and mesh size of the turbulence generating grids on turbulence modification. In particular, the presence of solid particles at the initial period of turbulence decay results in the pronounced enhancement of turbulence that diminishes appreciably downwards in the area of typical channel turbulent flow. As the results show, the character of modification of all three normal components of the Reynolds stress taking place at the initial period of turbulence decay are uniform almost all over the channel cross sections. The increase in the grid mesh size slows down the rate of the turbulence enhancement which is caused by particles.


Crowe, C. T. 2000. On models for turbulence modulation in fluid-particle flows. Int. J. Multiphase Flow, 26, 719–727.

Crowe, C. T. and Gillandt, I. 1998. Turbulence modulation of fluid-particle flows – a basic approach. In Proceedings of the 3rd International Conference on Multiphase Flow, Lyon, France, June 8–12, 1998. CD-ROM.

Deutsch, E. and Simonin, O. 1991. Large eddy simulation applied to the motion of particles in stationary homogeneous fluid turbulence. In Proceedings of the 1st ASME/JSME Fluids Engineering Conference, Portland, USA, June 23–27, 1991 (Michaelides, E. E., Fukano, T., and Serizawa, A., eds), Amer. Soc. Mechanical Engineers, Series FED, 110, 35–42.

Elghobashi, S. E. and Abou-Arab, T. W. 1983. A two-equation turbulence model for two-phase flows. Phys. Fluids, 26, 931–938.

Gerolymos, G. A. and Vallet, I. 2003. Contribution to single-point-closure Reynolds-stress modeling of inhomogeneous flow. In Proceedings of the 4th ASME/JSME Joint Fluids Summer Engineering Conference (FEDSM 2003), Honolulu, Hawaii, USA, July 6–10, 2003, FEDSM2003-45346. CD-ROM.

Hinze, J. O. 1975. Turbulence. McGraw-Hill, New York.

Hussainov, M., Kartushinsky, A., Rudi, Y., Shcheglov, I., and Tisler, S. 2005. Experimental study of the effect of velocity slip and mass loading on the modification of grid-generated turbulence in gas-solid particles flows. Proc. Estonian Acad. Sci. Eng., 11, 169–180.

Kartushinsky, A. I., Michaelides, E. E., and Zaichik, L. I. 2009a. Comparison of the RANS and PDF methods for air-particle flows. Int. J. Multiphase Flow, 35, 914–923.

Kartushinsky, A. I., Michaelides, E. E., Hussainov, M., and Rudi, Y. 2009b. Effects of the variation of mass loading and particle density in gas-solid particle flow in pipes. J. Powder Tech., 193, 176–181.

Launder, B. E., Reece, G. J., and Rodi, W. 1975. Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech., 68, 537–566.

Mukin, R. V. and Zaichik, L. I. 2012. Nonlinear algebraic Reynolds stress model for two-phase turbulent flows laden with small heavy particles. Int. J. Heat Fluid Flow, 33, 81–91.

Perić, M. and Scheuerer, G. 1989. CAST – A Finite Volume Method for Predicting Two-Dimensional Flow and Heat Transfer Phenomena. GRS – Technische Notiz SRR–89–01.

Pope, S. B. 2008. Turbulent Flows. Cambridge University Press, Cambridge, New York.

Pourahmadi, F. and Humphrey, J. A. C. 1983. Modeling solid-fluid turbulent flows with application to predicting erosive wear. Phys. Chem. Hydrodyn., 4, 191–219.

Reeks, M. W. 1991. On a kinetic equation for the transport of particles in turbulent flows. Phys. Fluids A, 3, 446–456.

Reeks, M. W. 1992. On the continuum equations for dispersed particles in nonuniform flows. Phys. Fluids A, 4, 1290–1303.

Rizk, M. A. and Elghobashi, S. E. 1989. A two-equation turbulence model for dispersed dilute confined two-phase flows. Int. J. Multiphase Flow, 15, 119–133.

Schiller, L. and Naumann, A. 1933. Über die grundlegenden Berechnungen bei der Schwerkraftaufbereitung. Z. Ver. Deutsch. Ing., 77, 318–320.

Shraiber, A. A., Yatsenko, V. P., Gavin, L. B., and Naumov, V. A. 1990. Turbulent Flows in Gas Suspensions. Hemisphere Pub. Corp., New York.

Simonin, O. 1990. Eulerian formulation for particle dispersion in turbulent two-phase flows. In Proceedings of the 5th Workshop on Two-Phase Flow Predictions, Erlangen, Germany, March 19–22, 1990 (Sommerfeld, M. and Wennerberg, D., eds), pp. 156–166. Forschungszentrum Jülich, Jülich.

Taulbee, D. B., Mashayek, F., and Barré, C. 1999. Simulation and Reynolds stress modeling of particle-laden turbulent shear flows. Int. J. Heat Fluid Flow, 20, 368–373.

Zaichik, L. I. and Alipchenkov, V. M. 2005. Statistical models for predicting particle dispersion and preferential concentration in turbulent flows. Int. J. Heat Fluid Flow, 26, 416–430.

Zaichik, L. I. and Vinberg, A. A. 1991. Modeling of particle dynamics and heat transfer in turbulent flows using equations for first and second moments of velocity and temperature fluctuations. In Proceedings of the 8th International Symposium on Turbulent Shear Flows, Munich, Germany, September 9–11, 1991, Vol. 1 (Durst, F., Friedrich, R., Launder, B. E., Schmidt, F. W., Schumann, U., and Whitelaw, J. H., eds), pp. 1021–1026. FRG, Munich.

Zaichik, L. I., Fede, P., Simonin, O., and Alipchenkov, V. M. 2007. Comparison of two statistical approaches for modeling collision in bidisperse mixture of particles settling in homogeneous turbulent flows. In Proceedings of the 6th International Conference on Multiphase Flow, Leipzig, Germany, July 9–13, 2007 (Sommerfeld, M., ed.). CD-ROM.

Back to Issue