ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

A shortcut from broadband to spectral aerosol optical depth; pp. 266–278

Full article in PDF format | doi: 10.3176/proc.2012.4.02

Authors
Martin Kannel, Hanno Ohvril, Oleg Okulov

Abstract

The concept behind the shortcut idea is a close correlation between column broadband aerosol optical depth (BAOD) and aerosol optical depth at 500 nm (AOD500). The method uses only two input parameters: (a) the Bouguer broadband coefficient of column transparency for optical mass m = 2 (solar elevation about 30°) and (b) integrated column precipitable water vapour which can be roughly estimated using surface water vapour pressure. In creating the method, a large database, including almost 20 000 complex, spectral and broadband direct solar beam observations at Tõravere, Estonia, during all seasons of a 8-year period, 2002–2009, was used. The AOD500 observations were performed by the NASA project AERONET and the broadband direct beam ones by the Estonian Meteorological and Hydrological Institute. Analysis of this database revealed a high correlation between BAOD and AOD500 which enabled transition from broadband to spectral AOD. Almost 82% of the observations in the database belonged to lower turbidities when AOD500 < 0.2. The root mean square deviation (RMSD) for AOD500 prediction in this range was 0.022. For AOD500 = 0.2–0.4, the RMSD was 0.035, for 0.4–0.6, the RMSD was 0.042. Relative RMSD for these ranges was about 22%, 12%, and 9%, respectively. For AOD500 > 0.6, relative RMSD remained 9%. For comparison, the same database was used to test Gueymard’s broadband parameterization based on his SMARTS2 classic model. The last one, apparently due to problems with circumsolar radiation, slightly but systematically underestimated the AOD500. However, there was a close correlation between our shortcut results and Gueymard’s broadband parameterization.


References

 

Aaltonen, V., Lihavainen, H., Kerminen, V.-M., Komp­pula, M., Hatakka, J., Eneroth, K., Kulmala, M., and Viisanen, Y. 2006. Measurements of optical properties of atmospheric aerosols in Northern Finland. Atmos. Chem. Phys., 6, 1155–1164.
http://dx.doi.org/10.5194/acp-6-1155-2006

Carlund, T., Landelius, T., and Josefsson, W. 2003. Com­parison and uncertainty of aerosol optical depth estimates derived from spectral and broadband measure­ments. JAM, 42, 1598–1610.
http://dx.doi.org/10.1175/1520-0450(2003)042<1598:CAUOAO>2.0.CO;2

Dirksen, R. J., Boersma, K. F., Eskes, H. J., Ionov, D. V., Bucsela, E. J., Levelt, P. F., and Kelder, H. M. 2011. Evaluation of stratospheric NO2 retrieved from the Ozone Monitoring Instrument: intercomparison, diurnal cycle, and trending. J. Geophys. Res., 116, D08305.
http://dx.doi.org/10.1029/2010JD014943

Evnevich, T. V. and Savikovskij, I. A. 1989. Calculation of direct solar radiation and coefficient of atmospheric transparency. Soviet Meteorol. Hydrol., 5, 92–95.

Gueymard, C. 1995. SMARTS2, a Simple Model of the Atmo­spheric Radiative Transfer of Sunshine: Algorithms and Performance Assessment. Tech. Rep. FSEC-PF-270-95 [Available from Florida Sol. Energy Center, 1679 Clearlake Rd., Cocoa, FL 32922-5703].

Gueymard, C. 1998. Turbidity determination from broadband irradiance measurements: a detailed multicoefficient approach. J. Appl. Meteor., 37, 414–435.
http://dx.doi.org/10.1175/1520-0450(1998)037<0414:TDFBIM>2.0.CO;2

Gueymard, C. and Kambezidis, H. 1997. Illuminance turbidity parameters and atmospheric extiction in the visible spectrum. Q. J. Roy. Met. Soc., 123, 679–697.
http://dx.doi.org/10.1002/qj.49712353908

Holben, B., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, I., and Smir­nov, A. 1998. AERONET - a federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66, 1–16.
http://dx.doi.org/10.1016/S0034-4257(98)00031-5

Ionov, D. V. 2010. Tropospheric NO2 trend over St. Peters­burg (Russia) as measured from space. Russ. J. Earth. Sci., 11, ES4004, 1–7.
http://dx.doi.org/10.2205/2010ES000437

Jakobson, E., Ohvril, H., Okulov, O., and Laulainen, N. 2005. Variability of radiosonde-observed precipitable water in the Baltic region. Nordic Hydrol., 36, 423–433.

Jakobson, E., Ohvril, H., and Elgered, G. 2009. Diurnal variability of precipitable water in the Baltic region, impact on transmittance of the direct solar radiation. Boreal Environ. Res., 14, 45–55.

Kalitin, N. N. 1938. Actinometry. Gidrometeorologicheskoe izdatelstvo, Leningrad–Moscow (in Russian).

Kallis, A., Russak, V., and Ohvril, H. 2005. 100 years of solar radiation measurements in Estonia. In Report of the 8th Session of the Baseline Surface Radiation Network (BSRN) Workshop and Scientific Review, Exeter, UK, 26–30 July 2004. World Climate Research Pro­gramme, WMO, WCRP Informal Report No. 4/2005, March 2005, C1–C4.

Kambezidis, H. D., Katevatis, E. M., Petrakis, M., Lykou­dis, S., and Asimakopoulos, D. N. 1998. Estimation of the Linke and Unsworth–Monteith turbidity factors in the visible spectrum: application for Athens, Greece. Sol. Energy, 62, 39–50.
http://dx.doi.org/10.1016/S0038-092X(97)00079-0

Kondratyev, K. Y. 1969. Radiation in the Atmosphere. Academic, San Diego, Calif.

Lenoble, J. 1993. Atmospheric Radiative Transfer. A. Deepak, Hampton, Virginia, USA.

Maurellis, A. and Tennyson, J. 2003. The climatic effects of water vapour. Phys. World, May, 29–33 (http://physicsworld.com/cws/article/print/17402).

Myurk, Yu. Kh. and Okhvril, Kh. A. 1990. Engineering pro­cedure for adjusting coefficient of atmospheric trans­parency from one atmospheric mass to another. Soviet Meteorol. Hydrol., 1, 89–95.

Ohvril, H., Okulov, O., Teral, H., and Teral, K. 1999. The atmospheric integral transparency coefficient and the Forbes effect. Sol. Energy, 66, 305–317.
http://dx.doi.org/10.1016/S0038-092X(99)00031-6

Ohvril, H., Teral, H., Tee, M., Russak, V., Okulov, O., Jõe­veer, A., Kallis, A., Abakumova, G., Terez, E., Guschchin, G., Terez, G., Olmo, F. J., Alados-Arboledas, L., and Laulainen, N. 2005. Multi-annual variability of atmospheric transparency in Estonia. In SOLARIS 2005, 2nd Joint Conference. International Forum of Experts in Solar Radiation, Hellenic Illumination Committee, Athens, 42–46.

Ohvril, H., Teral, H., Neiman, L., Kannel, M., Uustare, M., Tee, M., Russak, V., Okulov, O., Jõeveer, A., Kal­lis, A., Ohvril, T., Terez, E. I., Terez, G. A., Gush­chin, G. K., Abakumova, G. M., Gorba­renko, E. V., Tsvetkov, A. V., and Laulainen, N. 2009. Global dimming and brightening versus atmospheric column transparency, Europe, 1906–2007. J. Geophys. Res., 114, 1–17.
http://dx.doi.org/10.1029/2008JD010644

Okulov, O. 2003. Variability of Atmospheric Transparency and Precipitable Water in Estonia During Last Decades. PhD dissertation. Tartu University Press.

Okulov, O. and Ohvril, H. 2010. Column Transparency and Precipitable Water in Estonia. Variability During the Last Decades. Lambert Acad. Publish., Saarbrücken, Germany.

Okulov, O., Ohvril, H., and Kivi, R. 2002. Atmospheric precipit­able water in Estonia, 1990-2001. Boreal Environ. Res., 7, 291–300.

Olmo, F. J., Vida, J., Foyo-Moreno, I., Tovar, J., and Alados-Arboledas, L. 2001. Perfomance reduction of solar irradiance parametric models due to limitations in required aerosol data: case of the CPCR2 model. Theor. Appl. Climatol., 69, 253–263.
http://dx.doi.org/10.1007/s007040170030

Peixoto, J. P. and Oort, A. H. 1992. Physics of Climate. American Institute of Physics.

Smirnov, A., Holben, B. N., Eck, T. F., Slutsker, I., Chatenet, B., and Pinker, R. T. 2002. Diurnal vari­ability of aerosol optical depth observed at AERONET (Aerosol Robotic Network) sites. Geophys. Res. Let., 29(23), 2115, 30-1–30-4.

Thomas, G. E. and Stamnes, K. 2002. Radiative Transfer in the Atmosphere and Ocean. Cambridge University Press.

Toledano, C., Sorribas, M., Berjón, A., Morena de la, B. A., Frutos de, A. M., and Gouloub, P. 2007. Aerosol optical depth and Ångström exponent climatology at “El Arenosillo” AERONET site (Huelva, Spain). Q. J. R. Meteorol. Soc., 133, 795–807.
http://dx.doi.org/10.1002/qj.54

Unsworth, M. H. and Monteith, J. L. 1972. Aerosol and solar radiation in Britain. Q. J. R. Meteorol. Soc., 98, 778–797.
http://dx.doi.org/10.1002/qj.49709841806

Veismann, U. and Eerme, K. 2011. Solar Ultraviolet Radia­tion and Atmospheric Ozone. Ilmamaa, Tartu (in Estonian).

Zvereva, S. V. 1968. On the absorption of solar radiation by atmospheric water vapor. In Actinometry and Atmo­spheric Optics. Reports of the Sixth Inter­departmental Symposium on Actinometry and Atmospheric Optics, June 1966, Tartu. Valgus, Tallinn, 117–121 (in Russian).

 


Back to Issue