eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Effect of temperature on the sensitivity of cascaded lactose biosensors; pp. 306–313

Full article in PDF format | doi: 10.3176/proc.2012.4.05

Delia Peedel, Toonika Rinken


The sensitivity and application options of cascaded lactose biosensors along with the catalytic activity of three enzymes (β-galactosidase, glucose oxidase, and galactose oxidase) used for bio-recognition in these biosensors were studied at different temperatures ranging from 4 to 38.6 °C, the usual temperature span in the milk processing. Although at 4 °C, which is the common temperature of raw milk storage, the apparent activity of these enzymes was quite low and the resulting biosensor sensitivity decreased nearly 100 times in comparison with its sensitivity at 38.6 °C, it was possible to carry out lactose measurements with a biosensor comprising β-galactosidase and glucose oxidase within 10 min.



  1. ESA-A Dionex Corporation. 2010.

  2. de Vrese, M., Stegelmann, A., Richter, B., Fenselau, S., Laue, C., and Schrezenmeir, J. Probiotics – compensa­tion for lactase insufficiency. Am. J. Clin. Nutr., 2001, 73, 421S–429S.

  3. Guilbault, G. G., Sadar, M. H., and Peres, K. Fluorometric determination of carbohydrates. Anal. Biochem., 1969, 31, 91–101.

  4. Karasz, A. B., Gantenbein, W. M., and Bokus, L. Determina­tion of added lactose (nonfat dry milk) in meat products. I. Colorimetric method. J. Assoc. Offic. Anal. Chem., 1971, 54, 1436–1443.

  5. Marier, J. R. and Boulet, M. Direct analysis of lactose in milk and serum. J. Dairy Sci., 1959, 42, 1390–1391.

  6. Grimbleby, F. H. The determination of lactose in milk. J. Dairy Res., 1956, 23, 229.

  7. DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem., 1956, 28, 350–356.

  8. Tkac, J., Sturdik, E., and Gemeiner, P. Novel glucose non-interference biosensor for lactose detection based on galactose oxidase–peroxidase with and without co-immobilised [beta]-galactosidase. Analyst, 2000, 125, 1285–1289.

  9. Adanyi, N., Szabo, E. E., and Varadi, M. Multi-enzyme biosensors with amperometric detection for determina­tion of lactose in milk and dairy products. Eur. Food Res. Technol., 1999, 209, 220–226.

10. Sezgintürk, M. K. and Dinçkaya, E. [beta]-galactosidase monitoring by a biosensor based on Clark electrode: its optimization, characterization and application. Biosens. Bioelectron., 2008, 23, 1799–1804.

11. Göktug, T., Sezgintürk, M. K., and Dinçkaya, E. Glucose oxidase–[beta]-galactosidase hybrid biosensor based on glassy carbon electrode modified with mercury for lactose determination. Anal. Chim. Acta, 2005, 551, 51–56.

12. Logoglu, E., Sungur, S., and Yildiz, Y. Development of lactose biosensor based on [beta]-galactosidase and glucose oxidase immobilized into gelatin. J. Macro­mol. Sci. A, 2006, 43, 525–533.

13. Ammam, M. and Fransaer, J. Two-enzyme lactose bio­sensor based on [beta]-galactosidase and glucose oxidase deposited by AC-electrophoresis: charac­teristics and performance for lactose determination in milk. Sensor. Actuator. B Chem., 2010, 148, 583–589.

14. Loechel, C., Chemnitius, G. C., Borchardt, M., and Cammann, K. Amperometric bi-enzyme based bio­sensor for the determination of lactose with an extended linear range. Z. Lebensm. Unters. F. A, 1998, 207, 381–385.

15. Sharma, S. K., Singhal, R., Malhotra, B. D., Sehgal, N. and Kumar, A. Lactose biosensor based on Langmuir–Blodgett films of poly(3-hexyl thiophene). Biosens. Bioelectron., 2004, 20, 651–657.

16. Alberton, D., Silva de Oliveira, L., Peralta, R. M., and Barbosa-Tessmann, I. P. Production, purification, and characterization of a novel galactose oxidase from Fusarium acuminatum. J. Basic Microbiol., 2007, 47, 203–212.

17. Xu, F., Golightly, E., Schneider, P., Berka, R., Brown, K., Johnstone, J., Baker, D., Fuglsang, C., Brown, S., Svend­sen, A., and Klotz, A. Expression and charac­terization of a recombinant Fusarium spp. galactose oxidase. Biotechnol. Appl. Biochem., 2000, 88, 23–32.

18. Wimmerova, M. and Macholan, L. Sensitive amperometric biosensor for the determination of biogenic and synthetic amines using pea seedlings amine oxidase: a novel approach for enzyme immobilisation. Biosens. Bioelectron., 1999, 14, 695–702.

19. Niculescu, M., Nistor, C., Frébort, I., Peč, P., Mattias­son, B., and Csöregi, E. Redox hydrogel-based ampero­metric bienzyme electrodes for fish freshness monitoring. Anal. Chem., 2000, 72, 1591–1597.

20. Castillo, J., Gaspar, S., Sakharov, I., and Csöregi, E. Bienzyme biosensors for glucose, ethanol and putrescine built on oxidase sweet potato peroxidase. Biosens. Bioelectron., 2003, 18, 705–714.

21. Bankar, S. B., Bule, M. V., Singhal, R. S., and Ananthana­rayan, L. Glucose oxidase – an overview. Biotechnol. Adv., 2007, 27, 489–501.

22. Simpson, C., Jordaan, J., Gardiner, N. S., and Whiteley, C. Isolation, purification and characterization of a novel glucose oxidase from Penicillium sp. CBS 120262 optimally active at neutral pH. Prot. Expr. Purif., 2007, 51, 260–266.

23. Cevik, E., Senel, M., and Fatih Abasiyanik, M. Construc­tion of biosensor for determination of galactose with galactose oxidase immobilized on polymeric mediator contains ferrocene. Curr. Appl. Phys., 2010, 10, 1313–1316.

24. Sharma, S. K., Suman, Pundir, C. S., Sehgal, N., and Kumar, A. Galactose sensor based on galactose oxidase immobilized in polyvinyl formal. Sensor. Actuator. B Chem., 2006, 119, 15–19.

25. Baret, J. L. Large-scale production and application of immobilized lactase. Meth. Enzymol., 1987, 136, 411–423.

26. Todorova-Balvay, D., Stoilova, I., Gargova, S., and Vijayalakshmi, M. A. An efficient two step purifica­tion and molecular characterization of beta-galactosidases from Aspergillus oryzae. J. Mol. Recognit., 2006, 19, 299–304.

27. Firk, R., Stamer, E., Junge, W., and Krieter, J. Automation of oestrus detection in dairy cows: a review. Livest. Prod. Sci., 2002, 75, 219–232.

28. Eshkenazi, I., Maltz, E., Zion, B., and Rishpon, J. A three-cascaded-enzymes biosensor to determine lactose concentration in raw milk. J. Dairy Sci., 2000, 83, 1939–1945.

29. Svorc, J., Miertus, S., and Barlikova, A. Hybrid biosensor for the determination of lactose. Anal. Chem., 1990, 62, 1628–1631.

30. Stoica, L., Ludwig, R., Haltrich, D., and Gorton, L. Third-generation biosensor for lactose based on newly discovered cellobiose dehydrogenase. Anal. Chem., 2005, 78, 393–398.

31. Gao, F. G., Jeevarajan, A. S., and Anderson, M. M. Long-term continuous monitoring of dissolved oxygen in cell culture medium for perfused bioreactors using optical oxygen sensors. Biotechnol. Bioeng., 2004, 86, 425–433.

32. Õige, K., Avarmaa, T., Suisalu, A., and Jaaniso, R. Effect of long-term aging on oxygen sensitivity of luminescent Pd-tetraphenylporphyrin/PMMA films. Sensor. Actuator. B Chem., 2005, 106, 424–430.

33. Tanaka, Y., Kagamiishi, A., Kiuchi, A., and Horiuchi, T. Purification and properties of β-galactosidase from Aspergillus oryzae. J. Biochem., 1975, 77, 241–247.

34. Rinken, T. and Tenno, T. Dynamic model of amperometric biosensors. Characterisation of glucose biosensor output. Biosens. Bioelectron., 2001, 16, 53–59.

35. Rinken, T. Determination of kinetic constants and enzyme activity from a biosensor transient signal. Anal. Lett., 2003, 36, 1535–1545.

milkcomp_lactose.html (visited 03.10.2012).

37. Rinken, T. and Riik, H. Determination of antibiotic residues and their interaction in milk with lactate bio­sensor. J. Biochem. Biophys. Meth., 2006, 66, 13–21.


Back to Issue