eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2021): 1.024
On dispersion properties of surface motions in the Gulf of Finland; pp. 269–279
PDF | doi: 10.3176/proc.2011.4.07

Tarmo Soomere, Mikk Viidebaum, Jaan Kalda

The spreading rate of initially closely located water particles and passive drifters in the surface layer of the Gulf of Finland is studied using autonomous surface drifters. The average spreading rate increases with the increase in the time elapsed from the deployment, equivalently, with the increase in the distance between drifters. The typical spreading rate is about 200 m/day for separations below 0.5 km, 500 m/day for separations below 1 km and in the range of 0.5–3 km/day for separations in the range of 1–4 km. The spreading rate does not follow the Richardson law. The initial spreading, up to a distance of about 150 m, is governed by the power law d ~ t 0.27 whereas for larger separations the distance increases as d ~ t 2.5.


1. Kantha, L. M. and Clayson, C. A. Numerical Models of Oceans and Oceanic Processes. Academic Press, San Diego, San Francisco, 2000.

2. Myrberg, K., Ryabchenko, V., Isaev, A., Vankevich, R., Andrejev, O., Bendtsen, J., Erichsen, A., Funk­quist, L., Inkala, A., Neelov, I. et al. Valida­tion of three-dimensional hydrodynamic models in the Gulf of Finland based on a statistical analysis of a six-model ensemble. Boreal Env. Res., 2010, 15, 453–479.

3. Griffa, A., Piterbarg, L. I., and Ozgokmen, T. Pre­dict­ability of Lagrangian particle trajectories: effects of smoothing of the underlying Eulerian flow. J. Mar. Res., 2004, 62, 1–35.

4. Vandenbulcke, L., Beckers, J.-M., Lenartz, F., Barth, A., Poulain, P.-M., Aidonidis, M., Meyrat, J., Ardhuin, F., Tonani, M., Fratianni, C. et al. Super-ensemble techniques: Application to surface drift prediction. Progr. Oceanogr., 2009, 82, 149–167.

5. Soomere, T., Viikmäe, B., Delpeche, N., and Myrberg, K. Towards identification of areas of reduced risk in the Gulf of Finland, the Baltic Sea. Proc. Estonian Acad. Sci., 2010, 59, 156–165.

6. Soomere, T., Delpeche, N., Viikmäe, B., Quak, E., Meier, H. E. M., and Döös, K. Patterns of current-induced transport in the surface layer of the Gulf of Finland. Boreal Env. Res., 2011, 16 (Suppl. A), 49–63.

7. Alenius, P., Nekrasov, A., and Myrberg, K. The baroclinic Rossby-radius in the Gulf of Finland. Cont. Shelf Res., 2003, 23, 563–573.

8. Andrejev, O., Myrberg, K., Alenius, P., and Lund­berg, P. A. Mean circulation and water exchange in the Gulf of Finland – a study based on three-dimensional modelling. Boreal Env. Res., 2004, 9, 1–16.

9. Gästgifvars, M., Lauri, H., Sarkanen, A.-K., Myrberg, K., Andrejev, O., and Ambjörn, C. Modelling surface drifting of buoys during a rapidly-moving weather front in the Gulf of Finland, Baltic Sea. Estuar. Coast. Shelf Sci., 2006, 70, 567–576.

10. Lilover, M.-J., Pavelson, J., and Kõuts, T. Wind forced currents over shallow Naissaar Bank in the Gulf of Finland. Boreal Env. Res., 2011, 16 (Suppl. A), 164–174.

11. Andrejev, O., Sokolov, A., Soomere, T., Värv, R., and Viikmäe, B. The use of high-resolution bathymetry for circulation modelling in the Gulf of Finland. Estonian J. Eng., 2010, 16, 187–210.

12. Richardson, L. F. Atmospheric diffusion shown on a distance-neighbour graph. Proc. Roy. Soc. A, 1926, 110, 709–737.

13. Ollitrault, M., Gabillet, C., and Colin de Verdiere, A. Open ocean regimes of relative dispersion. J. Fluid Mech., 2005, 533, 381–407.

14. Döös, K. and Engqvist, A. Assessment of water exchange between a discharge region and the open sea – a comparison of different methodological concepts. Estuar. Coast. Shelf Sci., 2007, 74, 709–721.

15. Lumpkin, R. and Elipot, S. Surface drifter pair spreading in the North Atlantic. J. Geophys. Res., 2010, 115, Art. No. C12017.

16. Lin, J. T. Relative dispersion in the enstrophy-cascading inertial range of homogeneous two-dimensional turbulence. J. Atm. Sci., 1972, 29, 394–396.<0394:RDITEC>2.0.CO;2

17. Falkovich, G., Gawedzki, K., and Vergassola, M. Particles and fields in fluid turbulence. Rev. Mod. Phys., 2001, 73, 913–975.

18. LaCasce, J. H. Statistics from Lagrangian observations. Progr. Oceanogr., 2008, 77, 1–29.

19. Salazar, J. P. L. C. and Collins, L. R. Two-particle dis­persion in isotropic turbulent flows. Annu. Rev. Fluid Mech., 2009, 41, 405–432.

20. Bec, J., Gawedzki, K., and Horvai, P. Multifractal cluster­ing in compressible flows. Phys. Rev. Lett., 2004, 92, Art. No. 224501.

21. Kalda, J. Sticky particles in compressible flows: Aggrega­tion and Richardson’s law. Phys. Rev. Lett., 2007, 98, Art. No. 064501.

22. Cressman, J. R., Davoudi, J., Goldburg, W. I., and Schu­macher, J. Eulerian and Lagrangian studies in surface flow turbulence. New J. Phys., 2004, 6, Art. No. 53.

23. Soomere, T., Myrberg, K., Leppäranta, M., and Nekra­sov, A. The progress in knowledge of physical oceanography of the Gulf of Finland: a review for 1997–2007. Oceanologia, 2008, 50, 287–362.

24. Elken, J., Raudsepp, U., and Lips, U. On the estuarine transport reversal in deep layers of the Gulf of Finland. J. Sea Res., 2003, 49, 267–274.

25. Alenius, P., Myrberg, K., and Nekrasov, A. Physical oceanography of the Gulf of Finland: a review. Boreal Env. Res., 1998, 3, 97–125.

26. Andrejev, O., Myrberg, K., and Lundberg, P. A. Age and renewal time of water masses in a semi-enclosed basin – application to the Gulf of Finland. Tellus, 2004, 56A, 548–558.

27. Lehmann, A. and Myrberg, K. Upwelling in the Baltic Sea – a review. J. Marine Syst., 2008, 74, S3–S12.

28. Drijfhout, S. S. Eddy-genesis and the related heat transport: A parameter study. In Mesoscale/Synoptic Coherent Structures in Geophysical Turbulence (Nihoul, J. C. J. and Jamart, B. M., eds). Elsevier Oceanography Series, 1989, 50, 245–263.

29. Andrejev, O., Soomere, T., Sokolov, A., and Myrberg, K. The role of spatial resolution of a three-dimensional hydrodynamic model for marine transport risk assess­ment. Oceanologia, 2011, 53(1-TI), 309–334.

30. Soomere, T., Viikmäe, B., Delpeche, N., and Myrberg, K. Towards identification of areas of reduced risk in the Gulf of Finland, the Baltic Sea. Proc. Estonian Acad. Sci., 2010, 59, 156–165.

31. Skvortsov, A., Jamriska, M., and DuBois, T. C. Scaling laws of passive tracer dispersion in the turbulent sur­face layer. Phys. Rev. E, 2010, 82, 5, Art. No. 056304.

32. Döös, K. Inter-ocean exchange of water masses. J. Geophys. Res., 1995, 100, C13499–C13514.

33. de Vries, P. and Döös, K. Calculating Lagrangian trajectories using time-dependent velocity fields. J. Atm. Oceanic. Technol., 2001, 18, 1092–1101.<1092:CLTUTD>2.0.CO;2

34. Meier, H. E. M. Modeling the pathways and ages of inflowing salt- and freshwater in the Baltic Sea. Estuar. Coast. Shelf Sci., 2007, 74, 610–627.

35. Funkquist, L. HIROMB, an operational eddy-resolving model for the Baltic Sea. Bull. Maritime Inst. Gdańsk, 2001, 28, 7–16.

36. Gästgifvars, M., Ambjörn, C., and Funkquist, L. Opera­tional modelling of the trajectory and fate of spills in the Baltic Sea. In Proc. 25th Arctic and Marine Oil-spill Program (AMOP) Technical Seminar, Calgary, Canada, 2001. Environment Canada, 2002, 1115–1130.

Back to Issue