eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Some comments on the theory of short fibre reinforced materials; pp. 179–183

Full article in PDF format | doi: 10.3176/proc.2011.3.06

Heiko Herrmann, Marika Eik

The orientation of fibres in short fibre reinforced materials is essential for the properties of the composite. It is state of the art to use an orientation number to estimate how many fibres are aligned in the stress direction. This, however, is a very crude approach, as the orientation number is defined by use of the average of the projected length of the fibres. Therefore, the orientation number is not a material property – it depends also on the projection direction. Additionally, a simple number cannot be used to describe anisotropic properties. We introduce a tensorial approach, which is objective and consists of real material properties.

1. Grünewald, S. Performance-Based Design of Self-Compacting Fibre Reinforced Concrete. PhD thesis, Technische Universiteit Delft, 2004.

2. Lappa, E. S. High Strength Fibre Reinforced Concrete: Static and Fatigue Behaviour in Bending. PhD thesis, Technische Universiteit Delft, 2007.

3. Laranjeira de Oliveira, F. Design-Oriented Constitutive Model for Steel Fiber Reinforced Concrete. PhD thesis, Universitat Politecnica de Catalunya, 2010.

4. Papenfuss, C., Böhme, T., Herrmann, H., Muschik, W., and Verhás, J. Dynamics of the size and orientation distribution of microcracks and evolution of macroscopic damage parameters. J. Non-Equilib. Thermodyn., 2007, 32(2), 1–14.

5. Muschik, W., Papenfuss, C., and Ehrentraut, H. Concepts of Continuum Thermodynamics. Kielce University of Technology, Technische Universität Berlin, 1996.

6. Papenfuss, C., Ván, P., and Muschik, W. Mesoscopic theory of microcracks. Arch. Mech., 2003, 55(5–6), 481–499.

7. Muschik, W., Ehrentraut, H., and Papenfuss, C. Concepts of mesoscopic continuum physics with application to biaxial liquid crystals. J. Non-Equilib. Thermodyn., 2000, 25, 179–197.

8. Jankun-kelly, T. J. and Mehta, K. Superellipsoid-based, real symmetric traceless tensor glyphs motivated by nematic liquid crystal alignment visualization. In IEEE Transactions on Visualization and Computer Graphics (Proceedings Visualization/Information Visualization 2006)}. 2006, 1197–1204.

9. Alts, T. Thermodynamik elastischer Körper mit thermo-kinematischen Zwangsbedingungen: fadenverstärkte Materialien. Habilitation, TU Berlin, Fachbereich 9, 1979 (in German; Engl. translation of the title: Thermodynamics of elastic bodies with thermo-kinetic constraints: fibre reinforced materials).
Back to Issue