ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Pure spinor superfields, with application to D = 3 conformal models; pp. 280–289

Full article in PDF format | doi: 10.3176/proc.2010.4.05

Author
Martin Cederwall

Abstract
I review and discuss the construction of supersymmetry multiplets and manifestly supersymmetric Batalin–Vilkovisky actions by using pure spinors, with emphasis on models with maximal supersymmetry. The special cases of D = 3, N = 8 (Bagger–Lambert–Gustavsson) and N = 6 (Aharony–Bergman–Jafferis–Maldacena) conformal models are treated in detail.
References

  1. Nilsson, B. E. W. Pure spinors as auxiliary fields in the ten-dimensional supersymmetric Yang–Mills theory. Class. Quantum Grav., 1986, 3, L41.
doi:10.1088/0264-9381/3/2/007

  2. Howe, P. S. Pure spinor lines in superspace and ten-dimensional supersymmetric theories. Phys. Lett. B, 1991, 258, 141–144.
doi:10.1016/0370-2693(91)91221-G

  3. Howe, P. S. Pure spinors, function superspaces and supergravity theories in ten and eleven dimensions. Phys. Lett. B, 1991, 273, 90–94.
doi:10.1016/0370-2693(91)90558-8

  4. Berkovits, N. Super-Poincaré covariant quantization of the superstring. J. High Energy Phys., 2000, 04, 018; arXiv:hep-th/0001035.

  5. Berkovits, N. Covariant quantization of the superparticle using pure spinors. J. High Energy Phys., 2001, 09, 016; arXiv:hep-th/0105050.

  6. Berkovits, N. ICTP lectures on covariant quantization of the superstring. Proceedings of the ICTP Spring School on Superstrings and Related Matters, Trieste, Italy, 2002, arXiv:hep-th/0209059.

  7. Berkovits, N. Pure spinor formalism as an N = 2 topological string. J. High Energy Phys., 2005, 10, 089; arXiv:hep-th/0509120.

  8. Cederwall, M., Nilsson, B. E. W., and Tsimpis, D. The structure of maximally supersymmetric super-Yang–Mills theory constraining higher order corrections. J. High Energy Phys., 2001, 06, 034; arXiv:hep-th/0102009.

  9. Cederwall, M., Nilsson, B. E. W., and Tsimpis, D. D = 10 super-Yang–Mills at O¢2). J. High Energy Phys., 2001, 07, 042; arXiv:hep-th/0104236.

10. Cederwall, M., Nilsson, B. E. W., and Tsimpis, D. Spinorial cohomology and maximally supersymmetric theories. J. High Energy Phys., 2002, 02, 009; arXiv:hep-th/0110069.

11. Cederwall, M. Superspace methods in string theory, supergravity and gauge theory. Lectures at the XXXVII Winter School in Theoretical Physics “New Developments in Fundamental Interactions Theories”, Karpacz, Poland, Feb. 6–15, 2001, arXiv:hep-th/0105176.

12. Movshev, M. and Schwarz, A. On maximally supersymmetric Yang–Mills theories. Nucl. Phys. B, 2004, 681, 324–350; arXiv:hep-th/0311132.
doi:10.1016/j.nuclphysb.2003.12.033

13. Cederwall, M. and Nilsson, B. E. W. Pure spinors and D = 6 super-Yang–Mills. arXiv:0801.1428, 2008.

14. Cederwall, M., Gran, U., Nielsen, M., and Nilsson, B. E. W. Manifestly supersymmetric M-theory. J. High Energy Phys., 2000, 10, 041; arXiv:hep-th/0007035.

15. Cederwall, M., Gran, U., Nielsen, M., and Nilsson, B. E. W. Generalised 11-dimensional supergravity. In Quantization, Gauge Theory and Strings. Proceedings of the International Conference Dedicated to the Memory of Professor Efim Fradkin, Vol.~1 (Semikhatov, A., Vasiliev, M., and Zaikin, V., eds). Scientific World, Moscow, 2001, 94–105. arXiv:hep-th/0010042, 2000.

16. Cederwall, M., Gran, U., Nilsson, B. E. W., and Tsimpis, D. Supersymmetric corrections to eleven-dimensional supergravity. J. High Energy Phys., 2005, 05, 052; arXiv:hep-th/0409107.

17. Howe, P. S. and Tsimpis, D. On higher order corrections in M theory. J. High Energy Phys., 2003, 09, 038; arXiv:hep-th/0305129.

18. Berkovits, N. and Nekrasov, N. The character of pure spinors. Lett. Math. Phys., 2005, 74, 75–109; arXiv:hep-th/0503075.
doi:10.1007/s11005-005-0009-7

19. Marnelius, R. and Ögren, M. New symmetric inner products for physical states in BRST quantization. Nucl. Phys. B, 1991, 351, 474–490.
doi:10.1016/0550-3213(91)90098-I

20. Bagger, J. and Lambert, N. Modeling multiple M2’s. Phys. Rev. D, 2007, 75, 045020; arXiv:hep-th/0611108.
doi:10.1103/PhysRevD.75.045020

21. Gustavsson, A. Algebraic structures on parallel M2 branes. Nucl. Phys. B, 2009, 811, 66–76; arXiv:0709.1260.

22. Bagger, J. and Lambert, N. Gauge symmetry and supersymmetry of multiple M2-branes. Phys. Rev. D, 2008, 77, 065008; arXiv:0711.0955.

23. Bagger, J. and Lambert, N. Comments on multiple M2-branes. J. High Energy Phys., 2008, 02, 105; arXiv:0712.3738.

24. Papadopoulos, G. M2-branes, 3-Lie algebras and Plücker relations. J. High Energy Phys., 2008, 05, 054; arXiv:0804.2662.

25. Gauntlett, J. P. and Gutowski, J. B. Constraining maximally supersymmetric membrane actions. arXiv:0804.3078, 2008.

26. Lambert, N. and Tong, D. Membranes on an orbifold. Phys. Rev. Lett., 2008, 101, 041602; arXiv:0804.1114.

27. Distler, J., Mukhi, S., Papageorgakis, C., and van Raamsdonk, M. M2-branes on M-folds. J. High Energy Phys., 2008, 05, 038; arXiv:0804.1256.

28. Ho, P.-M. and Matsuo, Y. M5 from M2. J. High Energy Phys., 2008, 06, 105; arXiv:0804.3629.

29. Bandos, I. and Townsend, P. K. Light-cone M5 and multiple M2-branes. Class. Quantum Grav., 2008, 25, 245003; arXiv:0806.4777

30. Bandos, I. and Townsend, P. K. SDiff gauge theory and the M2 condensate. J. High Energy Phys., 2009, 02, 013; arXiv:0808.1583.

31. Gran, U., Nilsson, B. E. W., and Petersson, C. On relating multiple M2 and D2-branes. J. High Energy Phys., 2008, 10, 067; arXiv:0804.1784.

32. Gomis, J., Milanesi, G., and Russo, J. G. Bagger–Lambert theory for general Lie algebras. J. High Energy Phys., 2008, 06, 075; arXiv:0805.1012.

33. Benvenuti, S., Rodriguez-Gomez, D., Tonni, E., and Verlinde, H. N = 8 superconformal gauge theories and M2 branes. J. High Energy Phys., 2009, 01, 071; arXiv:0805.1087.

34. Ho, P.-M., Imamura, Y., and Matsuo, Y. M2 to D2 revisited. J. High Energy Phys., 2008, 07, 003; arXiv:0805.1202.

35. Aharony, O., Bergman, O., Jafferis, D. L., and Maldacena, J. N = 6 superconformal Chern–Simons-matter theories, M2-branes and their gravity duals. J. High Energy Phys., 2008, 10, 091; arXiv:0806.1218.

36. Gaiotto, D. and Witten, E. Janus configurations, Chern–Simons couplings, and the theta-angle in N = 4 super-Yang–Mills theory. arXiv:0804.2907, 2008.

37. Hosomichi, K., Lee, K.-M., Lee, S., Lee, S., and Park, J. N = 4 superconformal Chern–Simons theories with hyper and twisted hyper multiplets. J. High Energy Phys., 2008, 07, 091; arXiv:0805.3662.

38. Benna, M., Klebanov, I., Klose, T., and Smedbäck, M. Superconformal Chern–Simons theories and AdS4/CFT3 correspondence. J. High Energy Phys., 2008, 09, 072; arXiv:0806.1519.

39. Nishioka, T. and Takayanagi, T. On type IIA Penrose limit and N = 6 Chern–Simons theories. J. High Energy Phys., 2008, 08, 001; arXiv:0806.3391.

40. Minahan, J. and Zarembo, K. The Bethe Ansatz for superconformal Chern–Simons. J. High Energy Phys., 2008, 09, 040; arXiv:0806.3951.

41. Hosomichi, K., Lee, K.-M., Lee, S., Lee, S., and Park, J. N = 5,6 superconformal Chern–Simons theories and M2-branes on orbifolds. J. High Energy Phys., 2008, 09, 002; arXiv:0806.4977.

42. Bagger, J. and Lambert, N. Three-algebras and N = 6 Chern–Simons gauge theories. Phys. Lett. D, 2009, 79, 025002; arXiv:0807.0163.

43. Schnabl, M. and Tachikawa, Y. Classification of N = 6 superconformal theories of ABJM type. arXiv:0807.1102, 2008.

44. Nilsson, B. E. W. and Palmkvist, J. Superconformal M2-branes and generalized Jordan triple systems. Class. Quantum Grav., 2009, 26, 075007; arXiv:0807.5134.

45. Cederwall, M. N = 8 superfield formulation of the Bagger–Lambert–Gustavsson model. J. High Energy Phys., 2008, 09, 116; arXiv:0808.3242.

46. Bandos, I. NB BLG model in N = 8 superfields. Phys. Lett. B, 2008, 669, 193–195; arXiv:0808.3562.

47. Mauri, A. and Petkou, A. C. An N = 1 superfield action for M2 branes. Phys. Lett. B, 2008, 666, 527–532; arXiv:0806.2270.

48. Cherkis, S. and Sämann, C. Multiple M2-branes and generalized 3-Lie algebras. Phys. Lett. D, 2008, 78, 066019; arXiv:0807.0808.

49. Cederwall, M. Superfield actions for N = 8 and N = 6 conformal theories in three dimensions. J. High Energy Phys., 2008, 10, 070; arXiv:0809.0318.

50. Fré, P. and Grassi, P. A. Pure spinor formalism for OSp(N|4) backgrounds. arXiv:0807.0044, 2008.

51. Gustavsson, A. One-loop corrections to Bagger–Lambert theory. Nucl. Phys. B, 2009, 807, 315–333; arXiv:0805.4443.

52. Bedford, J. and Berman, D. A note on quantum aspects of multiple membranes. Phys. Lett. B, 2008, 668, 67–71; arXiv:0806.4900.

53. Berkovits, N. and Nekrasov, N. Multiloop superstring amplitudes from non-minimal pure spinor formalism. J. High Energy Phys., 2006, 12, 029; arXiv:hep-th/0609012.

54. Grassi, P. A. and Vanhove, P. Higher-loop amplitudes in the non-minimal pure spinor formalism. J. High Energy Phys., 2009, 05, 089; arXiv:0903.3903.
Back to Issue