eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Pure spinor superfields, with application to D = 3 conformal models; pp. 280–289

Full article in PDF format | doi: 10.3176/proc.2010.4.05

Martin Cederwall

I review and discuss the construction of supersymmetry multiplets and manifestly supersymmetric Batalin–Vilkovisky actions by using pure spinors, with emphasis on models with maximal supersymmetry. The special cases of D = 3, N = 8 (Bagger–Lambert–Gustavsson) and N = 6 (Aharony–Bergman–Jafferis–Maldacena) conformal models are treated in detail.

  1. Nilsson, B. E. W. Pure spinors as auxiliary fields in the ten-dimensional supersymmetric Yang–Mills theory. Class. Quantum Grav., 1986, 3, L41.

  2. Howe, P. S. Pure spinor lines in superspace and ten-dimensional supersymmetric theories. Phys. Lett. B, 1991, 258, 141–144.

  3. Howe, P. S. Pure spinors, function superspaces and supergravity theories in ten and eleven dimensions. Phys. Lett. B, 1991, 273, 90–94.

  4. Berkovits, N. Super-Poincaré covariant quantization of the superstring. J. High Energy Phys., 2000, 04, 018; arXiv:hep-th/0001035.

  5. Berkovits, N. Covariant quantization of the superparticle using pure spinors. J. High Energy Phys., 2001, 09, 016; arXiv:hep-th/0105050.

  6. Berkovits, N. ICTP lectures on covariant quantization of the superstring. Proceedings of the ICTP Spring School on Superstrings and Related Matters, Trieste, Italy, 2002, arXiv:hep-th/0209059.

  7. Berkovits, N. Pure spinor formalism as an N = 2 topological string. J. High Energy Phys., 2005, 10, 089; arXiv:hep-th/0509120.

  8. Cederwall, M., Nilsson, B. E. W., and Tsimpis, D. The structure of maximally supersymmetric super-Yang–Mills theory constraining higher order corrections. J. High Energy Phys., 2001, 06, 034; arXiv:hep-th/0102009.

  9. Cederwall, M., Nilsson, B. E. W., and Tsimpis, D. D = 10 super-Yang–Mills at O¢2). J. High Energy Phys., 2001, 07, 042; arXiv:hep-th/0104236.

10. Cederwall, M., Nilsson, B. E. W., and Tsimpis, D. Spinorial cohomology and maximally supersymmetric theories. J. High Energy Phys., 2002, 02, 009; arXiv:hep-th/0110069.

11. Cederwall, M. Superspace methods in string theory, supergravity and gauge theory. Lectures at the XXXVII Winter School in Theoretical Physics “New Developments in Fundamental Interactions Theories”, Karpacz, Poland, Feb. 6–15, 2001, arXiv:hep-th/0105176.

12. Movshev, M. and Schwarz, A. On maximally supersymmetric Yang–Mills theories. Nucl. Phys. B, 2004, 681, 324–350; arXiv:hep-th/0311132.

13. Cederwall, M. and Nilsson, B. E. W. Pure spinors and D = 6 super-Yang–Mills. arXiv:0801.1428, 2008.

14. Cederwall, M., Gran, U., Nielsen, M., and Nilsson, B. E. W. Manifestly supersymmetric M-theory. J. High Energy Phys., 2000, 10, 041; arXiv:hep-th/0007035.

15. Cederwall, M., Gran, U., Nielsen, M., and Nilsson, B. E. W. Generalised 11-dimensional supergravity. In Quantization, Gauge Theory and Strings. Proceedings of the International Conference Dedicated to the Memory of Professor Efim Fradkin, Vol.~1 (Semikhatov, A., Vasiliev, M., and Zaikin, V., eds). Scientific World, Moscow, 2001, 94–105. arXiv:hep-th/0010042, 2000.

16. Cederwall, M., Gran, U., Nilsson, B. E. W., and Tsimpis, D. Supersymmetric corrections to eleven-dimensional supergravity. J. High Energy Phys., 2005, 05, 052; arXiv:hep-th/0409107.

17. Howe, P. S. and Tsimpis, D. On higher order corrections in M theory. J. High Energy Phys., 2003, 09, 038; arXiv:hep-th/0305129.

18. Berkovits, N. and Nekrasov, N. The character of pure spinors. Lett. Math. Phys., 2005, 74, 75–109; arXiv:hep-th/0503075.

19. Marnelius, R. and Ögren, M. New symmetric inner products for physical states in BRST quantization. Nucl. Phys. B, 1991, 351, 474–490.

20. Bagger, J. and Lambert, N. Modeling multiple M2’s. Phys. Rev. D, 2007, 75, 045020; arXiv:hep-th/0611108.

21. Gustavsson, A. Algebraic structures on parallel M2 branes. Nucl. Phys. B, 2009, 811, 66–76; arXiv:0709.1260.

22. Bagger, J. and Lambert, N. Gauge symmetry and supersymmetry of multiple M2-branes. Phys. Rev. D, 2008, 77, 065008; arXiv:0711.0955.

23. Bagger, J. and Lambert, N. Comments on multiple M2-branes. J. High Energy Phys., 2008, 02, 105; arXiv:0712.3738.

24. Papadopoulos, G. M2-branes, 3-Lie algebras and Plücker relations. J. High Energy Phys., 2008, 05, 054; arXiv:0804.2662.

25. Gauntlett, J. P. and Gutowski, J. B. Constraining maximally supersymmetric membrane actions. arXiv:0804.3078, 2008.

26. Lambert, N. and Tong, D. Membranes on an orbifold. Phys. Rev. Lett., 2008, 101, 041602; arXiv:0804.1114.

27. Distler, J., Mukhi, S., Papageorgakis, C., and van Raamsdonk, M. M2-branes on M-folds. J. High Energy Phys., 2008, 05, 038; arXiv:0804.1256.

28. Ho, P.-M. and Matsuo, Y. M5 from M2. J. High Energy Phys., 2008, 06, 105; arXiv:0804.3629.

29. Bandos, I. and Townsend, P. K. Light-cone M5 and multiple M2-branes. Class. Quantum Grav., 2008, 25, 245003; arXiv:0806.4777

30. Bandos, I. and Townsend, P. K. SDiff gauge theory and the M2 condensate. J. High Energy Phys., 2009, 02, 013; arXiv:0808.1583.

31. Gran, U., Nilsson, B. E. W., and Petersson, C. On relating multiple M2 and D2-branes. J. High Energy Phys., 2008, 10, 067; arXiv:0804.1784.

32. Gomis, J., Milanesi, G., and Russo, J. G. Bagger–Lambert theory for general Lie algebras. J. High Energy Phys., 2008, 06, 075; arXiv:0805.1012.

33. Benvenuti, S., Rodriguez-Gomez, D., Tonni, E., and Verlinde, H. N = 8 superconformal gauge theories and M2 branes. J. High Energy Phys., 2009, 01, 071; arXiv:0805.1087.

34. Ho, P.-M., Imamura, Y., and Matsuo, Y. M2 to D2 revisited. J. High Energy Phys., 2008, 07, 003; arXiv:0805.1202.

35. Aharony, O., Bergman, O., Jafferis, D. L., and Maldacena, J. N = 6 superconformal Chern–Simons-matter theories, M2-branes and their gravity duals. J. High Energy Phys., 2008, 10, 091; arXiv:0806.1218.

36. Gaiotto, D. and Witten, E. Janus configurations, Chern–Simons couplings, and the theta-angle in N = 4 super-Yang–Mills theory. arXiv:0804.2907, 2008.

37. Hosomichi, K., Lee, K.-M., Lee, S., Lee, S., and Park, J. N = 4 superconformal Chern–Simons theories with hyper and twisted hyper multiplets. J. High Energy Phys., 2008, 07, 091; arXiv:0805.3662.

38. Benna, M., Klebanov, I., Klose, T., and Smedbäck, M. Superconformal Chern–Simons theories and AdS4/CFT3 correspondence. J. High Energy Phys., 2008, 09, 072; arXiv:0806.1519.

39. Nishioka, T. and Takayanagi, T. On type IIA Penrose limit and N = 6 Chern–Simons theories. J. High Energy Phys., 2008, 08, 001; arXiv:0806.3391.

40. Minahan, J. and Zarembo, K. The Bethe Ansatz for superconformal Chern–Simons. J. High Energy Phys., 2008, 09, 040; arXiv:0806.3951.

41. Hosomichi, K., Lee, K.-M., Lee, S., Lee, S., and Park, J. N = 5,6 superconformal Chern–Simons theories and M2-branes on orbifolds. J. High Energy Phys., 2008, 09, 002; arXiv:0806.4977.

42. Bagger, J. and Lambert, N. Three-algebras and N = 6 Chern–Simons gauge theories. Phys. Lett. D, 2009, 79, 025002; arXiv:0807.0163.

43. Schnabl, M. and Tachikawa, Y. Classification of N = 6 superconformal theories of ABJM type. arXiv:0807.1102, 2008.

44. Nilsson, B. E. W. and Palmkvist, J. Superconformal M2-branes and generalized Jordan triple systems. Class. Quantum Grav., 2009, 26, 075007; arXiv:0807.5134.

45. Cederwall, M. N = 8 superfield formulation of the Bagger–Lambert–Gustavsson model. J. High Energy Phys., 2008, 09, 116; arXiv:0808.3242.

46. Bandos, I. NB BLG model in N = 8 superfields. Phys. Lett. B, 2008, 669, 193–195; arXiv:0808.3562.

47. Mauri, A. and Petkou, A. C. An N = 1 superfield action for M2 branes. Phys. Lett. B, 2008, 666, 527–532; arXiv:0806.2270.

48. Cherkis, S. and Sämann, C. Multiple M2-branes and generalized 3-Lie algebras. Phys. Lett. D, 2008, 78, 066019; arXiv:0807.0808.

49. Cederwall, M. Superfield actions for N = 8 and N = 6 conformal theories in three dimensions. J. High Energy Phys., 2008, 10, 070; arXiv:0809.0318.

50. Fré, P. and Grassi, P. A. Pure spinor formalism for OSp(N|4) backgrounds. arXiv:0807.0044, 2008.

51. Gustavsson, A. One-loop corrections to Bagger–Lambert theory. Nucl. Phys. B, 2009, 807, 315–333; arXiv:0805.4443.

52. Bedford, J. and Berman, D. A note on quantum aspects of multiple membranes. Phys. Lett. B, 2008, 668, 67–71; arXiv:0806.4900.

53. Berkovits, N. and Nekrasov, N. Multiloop superstring amplitudes from non-minimal pure spinor formalism. J. High Energy Phys., 2006, 12, 029; arXiv:hep-th/0609012.

54. Grassi, P. A. and Vanhove, P. Higher-loop amplitudes in the non-minimal pure spinor formalism. J. High Energy Phys., 2009, 05, 089; arXiv:0903.3903.
Back to Issue