ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Bethe ansatz for the deformed Gaudin model; pp. 326–331

Full article in PDF format | doi: 10.3176/proc.2010.4.11

Authors
Petr Kulish, Nenad Manojlović, Maxim Samsonov, Alexander Stolin

Abstract
A deformation of the sl(2) Gaudin model by a Jordanian r-matrix depending on the spectral parameter is constructed. The energy spectrum is preserved and recurrent creation operators are proposed.
References

  1. Gaudin, M. La fonction d’onde de Bethe. Masson, Paris, 1983.

  2. Sklyanin, E. K. Separation of variables in the Gaudin model. J. Soviet. Math., 1989, 47, 2473–2488.
doi:10.1007/BF01840429

  3. Kulish, P. P. and Sklyanin, E. K. Solution of the Yang–Baxter equation. J. Soviet. Math., 1982, 19, 1596–1620.
doi:10.1007/BF01091463

  4. Kulish, P. P. and Stolin, A. A. Deformed Yangians and integrable models. Czech. J. Phys., 1997, 47, 1207–1212.
doi:10.1023/A:1022869414679

  5. Kulish, P. P. Twisted sl(2) Gaudin model. PDMI preprint, 2002, 08/2002.

  6. Manojlović, N. and António, N. C. sl2 Gaudin model with Jordanian twist. J. Math. Phys., 2005, 46, 102701, 19 pp.

  7. Stolin, A. A. On rational solutions of Yang–Baxter equation for sl(n). Math. Scand., 1991, 69, 57–80.

  8. Stolin, A. A. Constant solutions of Yang–Baxter equation for sl(2) and sl(3). Math. Scand., 1991, 69, 81–88.

  9. Sklyanin, E. K., Takhtajan, L. A., and Faddeev, L. D. Quantum inverse problem method. Teoret. Mat. Fiz., 1979, 40, 194–220.

10. Khoroshkin, S. M., Stolin, A. A., and Tolstoy, V. N. Deformation of Yangian Y(sl2). Comm. Algebra, 1998, 26, 1041–1055.
doi:10.1080/00927879808826182

11. Khoroshkin, S. M., Stolin, A. A., and Tolstoy, V. N. q-power function over q-commuting variables and deformed XXX and XXZ chains. Phys. Atomic Nuclei, 1979, 64, 2173–2178.
doi:10.1134/1.1432921
Back to Issue