eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045
Molecularly imprinted polymers: a new approach to the preparation of functional materials; pp. 3–11
PDF | doi: 10.3176/proc.2009.1.01

Andres Öpik, Anna Menaker, Jekaterina Reut, Vitali Syritski

Molecular imprinting is a method for creating specific cavities in synthetic polymer matrices with memory for the template molecules. To date molecularly imprinted polymers (MIPs) have obtained a strong position in materials science and technology, expanding significantly the list of functional materials. This article provides a short review of the molecular imprinting technique with special attention paid to electrosynthesized electrically conducting polymers (ECPs), polypyrrole and poly­ethylenedioxythiophene, as matrix materials for molecular imprinting. We describe two different ECP-based MIP systems: enantioselective thin films of overoxidized polypyrrole imprinted with L-aspartic acid and surface imprinted polyethylene­dioxythiophene for selective protein adsorption.


  1. Haupt, K. and Mosbach, K. Molecularly imprinted poly­mers and their use in biomimetic sensors. Chem. Rev., 2000, 100(7), 2495–2504.

  2. Piletsky, S. A. and Turner, A. P. F. Electrochemical sensors based on molecularly imprinted polymers. Electroanalysis, 2002, 14(5), 317–323.

  3. Shi, H. Q., Tsai, W. B., Garrison, M. D., Ferrari, S., and Ratner, B. D. Template-imprinted nanostructured sur­faces for protein recognition. Nature, 1999, 398(6728), 593–597.

  4. Fortina, P., Kricka, L. J., Surrey, S., and Grodzinski, P. Nanobiotechnology: the promise and reality of new approaches to molecular recognition. Trends Bio­technol., 2005, 23(4), 168–173.

  5. Mosbach, K. and Ramström, O. The emerging technique of molecular imprinting and its future impact on biotechnology. Nature Biotechnol., 1996, 14(2), 163–170.

  6. Wulff, G. Enzyme-like catalysis by molecularly imprinted polymers. Chem. Rev., 2002, 102(1), 1–27.

  7. Polyakov, M. V. Adsorption properties and structure of silica gel. Zh. Fiz. Khim., 1931, 2, 799–905 (in Russian).

  8. Dickey, F. H. Specific adsorption. J. Phys. Chem., 1955, 59(8), 695–707.

  9. Pauling, L. A theory of the structure and process of formation of antibodies. J. Am. Chem. Soc., 1940, 62(10), 2643–2657.

10. Wulff, G. and Sarhan, A. The use of polymers with enzymeanalogous structures for the resolution of racemates. Angew. Chem. Int. Ed., 1972, 11, 341.

11. Arshady, R. and Mosbach, K. Synthesis of substrate-selective polymers by host–guest polymerization. Macromol. Chem. Phys.–Makromol. Chem., 1981, 182(2), 687–692. doi:10.1002/macp.1981.021820240

12. Ye, L. and Mosbach, K. Molecular imprinting: synthetic materials as substitutes for biological antibodies and receptors. Chem. Mater., 2008, 20(3), 859–868.

13. Wulff, G. Molecular imprinting in cross-linked materials with the aid of molecular templates – a way towards artificial antibodies. Angew. Chem. Int. Ed., 1995, 34(17), 1812–1832.

14. Sellergren, B. Molecular imprinting by noncovalent inter­actions – tailor-made chiral stationary phases of high selectivity and sample load-capacity. Chirality, 1989, 1(1), 63–68.

15. Mayes, A. G. and Whitcombe, M. J. Synthetic strategies for the generation of molecularly imprinted organic polymers. Adv. Drug Deliv. Rev., 2005, 57(12), 1742–1778.

16. Allender, C. J., Brain, K. R., and Heard, C. M. Molecu­larly imprinted polymers – preparation, biomedical applications and technical challenges. In Progress in Medicinal Chemistry (King, F. D. and Oxford, A. W., eds). Elsevier, 1999, 235–291.

17. Mayes, A. G. and Mosbach, K. Molecularly imprinted polymer beads: suspension polymerization using a liquid perfluorocarbon as the dispersing phase. Anal. Chem., 1996, 68(21), 3769–3774.

18. Flores, A., Cunliff, D., Whitcombe, M. J., and Vulf­son, E. N. Imprinted polymers prepared by aqueous suspension polymerization. J. Appl. Polymer Sci., 2000, 77(8), 1841–1850.

19. Mathew-Krotz, J. and Shea, K. J. Imprinted polymer membranes for the selective transport of targeted neutral molecules. J. Am. Chem. Soc., 1996, 118(34), 8154–8155.

20. Jakoby, B., Ismail, G. M., Byfield, M. P., and Velle­koop, M. J. A novel molecularly imprinted thin film applied to a Love wave gas sensor. Sensor. Actuat.
, 1999, 76(1–3), 93–97.

21. Kobayashi, T., Fukaya, T., Abe, M., and Fujii, N. Phase inversion molecular imprinting by using template copolymers for high substrate recognition. Langmuir, 2002, 18(7), 2866–2872.

22. Nicholls, I. A. and Rosengren, J. P. Molecular imprinting of surfaces. Bioseparation, 2001, 10(6), 301–305.

23. Malitesta, C., Losito, I., and Zambonin, P. G. Molecularly imprinted electrosynthesized polymers: new materials for biomimetic sensors. Anal. Chem., 1999, 71(7), 1366–1370.

24. Spurlock, L. D., Jaramillo, A., Praserthdam, A., Lewis, J., and Brajter-Toth, A. Selectivity and sensitivity of ultrathin purine-templated overoxidized polypyrrole film electrodes. Anal. Chim. Acta, 1996, 336(1–3), 37–46.

25. Deore, B., Chen, Z. D., and Nagaoka, T. Overoxidized polypyrrole with dopant complementary cavities as a new molecularly imprinted polymer matrix. Anal. Sci., 1999, 15(9), 827–828.

26. Heeger, A. J. Semiconducting and metallic polymers: the fourth generation of polymeric materials. Synthetic Met., 2001, 125(1), 23–42.

27. MacDiarmid, A. G. Synthetic metals: a novel role for organic polymers. Synthetic Met., 2001, 125(1), 11–22.

28. Gofer, Y., Sarker, H., Killian, J. G., Poehler, T. O., and Searson, P. C. An all-polymer charge storage device. Appl. Phys. Lett., 1997, 71(11), 1582–1584.

29. Dennler, G., Bereznev, S., Fichou, D., Holl, K., Ilic, D., Koeppe, R., Krebs, M., Labouret, A., Lungen­schmied, C., Marchenko, A., Meissner, D., Melli­kov, E., Meot, J., Meyer, A., Meyer, T., Neuge­bauer, H., Öpik, A., Sariciftci, N. S., Taillemite, S., and Wohrle, T. A self-rechargeable and flexible polymer solar battery. Solar Energy, 2007, 81(8), 947–957.

30. Smela, E. Conjugated polymer actuators. MRS Bull., 2008, 33(3), 197–204.

31. Adhikari, B. and Majumdar, S. Polymers in sensor applications. Prog. Polym. Sci., 2004, 29(7), 699–766.

32. Bobacka, J. Conducting polymer-based solid-state ion-selective electrodes. Electroanalysis, 2006, 18(1), 7–18.

33. Cosnier, S. Recent advances in biological sensors based on electrogenerated polymers: a review. Anal. Lett., 2007, 40(7), 1260–1279.

34. Wallace, G. and Spinks, G. Conducting polymers – bridg­ing the bionic interface. Soft Matter, 2007, 3(6), 665–671.

35. Vernitskaya, T. V. and Efimov, O. N. Polypyrrole: a con­ducting polymer (synthesis, properties, and applica­tions). Usp. Khim., 1997, 66(5), 489–505 (in Russian).

36. Rodriguez, I., Scharifker, B. R., and Mostany, J. In situ FTIR study of redox and overoxidation processes in polypyrrole films. J. Electroanal. Chem., 2000, 491(1–2), 117–125.

37. Shiigi, H., Kijima, D., Ikenaga, Y., Hori, K., Fukazawa, S., and Nagaoka, T. Molecular recognition for bile acids using a molecularly imprinted overoxidized poly­pyrrole film. J. Electrochem. Soc., 2005, 152(8), H129–H134.

38. Chen, Z. D., Takei, Y., Deore, B. A., and Nagaoka, T. Enantioselective uptake of amino acid with over­oxidized polypyrrole colloid templated with L-lactate. Analyst, 2000, 125(12), 2249–2254.

39. Shiigi, H., Okamura, K., Kijima, D., Hironaka, A., Deore, B., Sree, U., and Nagaoka, T. Fabrication process and characterization of a novel structural isomer sensor – molecularly imprinted overoxidized polypyrrole film. Electrochem. Solid State Lett., 2003, 6(1), H1–H3.

40. Ramanaviciene, A. and Ramanavicius, A. Molecularly imprinted polypyrrole-based synthetic receptor for direct detection of bovine leukemia virus glyco­proteins. Biosens. Bioelectron., 2004, 20(6), 1076–1082.

41. Ebarvia, B. S., Cabanilla, S., and Sevilla, F. Biomimetic properties and surface studies of a piezoelectric caffeine sensor based on electro synthesized poly­pyrrole. Talanta, 2005, 66(1), 145–152.

42. Ramström, O. and Ansell, R. J. Molecular imprinting technology: challenges and prospects for the future. Chirality, 1998, 10(3), 195–209.

43. Maier, N. M., Franco, P., and Lindner, W. Separation of enantiomers: needs, challenges, perspectives. J. Chromatogr. A, 2001, 906(1–2), 3–33.

44. Deore, B., Chen, Z. D., and Nagaoka, T. Potential-induced enantioselective uptake of amino acid into molecularly imprinted overoxidized polypyrrole. Anal. Chem., 2000, 72(17), 3989–3994.

45. Syritski, V., Reut, J., Menaker, A., Gyurcsányi, R. E., and Öpik, A. Electrosynthesized molecularly imprinted polypyrrole films for enantioselective recognition of L-aspartic acid. Electrochim. Acta, 2008, 53(6), 2729–2736.

46. Ohtani, S., Matsushima, Y., Kobayashi, Y., and Kishi, K. Evaluation of aspartic acid racemization ratios in the human femur for age estimation. J. Forensic Sci., 1998, 43(5), 949–953.

47. Syritski, V., Gyurcsányi, R. E., Öpik, A., and Tóth, K. Synthesis and characterization of inherently conduct­ing polymers by using scanning electrochemical micro­scopy and Electrochemical Quartz Crystal Micro­balance. Synthetic Met., 2005, 152(1–3), 133–136.

48. Syritski, V., Öpik, A., and Forsén, O. Ion transport inves­tigations of polypyrroles doped with different anions by EQCM and CER techniques. Electrochim. Acta, 2003, 48(10), 1409–1417.

49. Liang, H. J., Ling, T. R., Rick, J. F., and Chou, T. C. Molecularly imprinted electrochemical sensor able to enantroselectivly recognize D and L-tyrosine. Anal. Chim. Acta, 2005, 542(1), 83–89.

50. Bossi, A., Bonini, F., Turner, A. P. F., and Piletsky, S. A. Molecularly imprinted polymers for the recognition of proteins: the state of the art. Biosens. Bioelectron., 2007, 22(6), 1131–1137.

51. Pap, T. and Horvai, G. Binding assays with molecularly imprinted polymers – why do they work? J. Chromatogr. B–Anal. Technol. Biomed. Life Sci., 2004, 804(1), 167–172.

52. Ge, Y. and Turner, A. P. F. Too large to fit? Recent developments in macromolecular imprinting. Trends Biotechnol., 2008, 26(4), 218–224.

53. Bossi, A., Piletsky, S. A., Piletska, E. V., Righetti, P. G., and Turner, A. P. F. Surface-grafted molecularly imprinted polymers for protein recognition. Anal. Chem., 2001, 73(21), 5281–5286.

54. Yilmaz, E., Haupt, K., and Mosbach, K. The use of immobilized templates – a new approach in molecular imprinting. Angew. Chem. Int. Ed., 2000, 39(12), 2115–2118.

55. Titirici, M. M., Hall, A. J., and Sellergren, B. Hier­arch­ically imprinted stationary phases: mesoporous poly­mer beads containing surface-confined binding sites for adenine. Chem. Mater., 2002, 14(1), 21–23.

56. Titirici, M. M., Hall, A. J., and Sellergren, B. Hierarchical imprinting using crude solid phase peptide synthesis products as templates. Chem. Mater., 2003, 15(4), 822–824.

57. Li, Y., Yang, H. H., You, Q. H., Zhuang, Z. X., and Wang, X. R. Protein recognition via surface molecu­larly imprinted polymer nanowires. Anal. Chem., 2006, 78(1), 317–320.

58. Menaker, A., Syritski, V., Reut, J., Öpik, A., Horváth, V., and Gyurcsányi, R. E. Electrosynthesized surface imprinted conducting polymer microrods for selective protein recognition. Advanced Materials, 2009, provisionally accepted.

Back to Issue