ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Discretization of continuum physics – a comparison of numerical methods from a physical point of view; pp. 145–154

Full article in PDF format | doi: 10.3176/proc.2008.3.05

Author
Heiko Herrmann

Abstract
For numerical calculations in continuum physics partial differential equations and the space-time are discretized. This can be done in different ways. Common approaches are finite difference methods and finite element methods, more rarely finite volume methods are used. Each method has different mathematical properties, which have been discussed in the literature, but they also imply a different physical meaning. This issue is discussed in this article and the connection of finite volume methods to thermodynamics of discrete systems is shown.
References

1. Knabner, P. and Angermann, L. Numerik partieller Differentialgleichungen. Springer, 2000.

2. Alberty, J., Carstensen, C. and Funken, S. A. Remarks around 50 lines of matlab: short finite element implementation. Num. Alg., 1999, 20, 117–137.

3. Muschik, W., Papenfuβ, C. and Ehrentraut, H. Concepts of Continuum Thermodynamics. Technische Universität Berlin und Kielce University of Technology, 1996.

4. Muschik, W. Aspects of Non-Equilibrium Thermodynamics. World Scientific, Singapore, 1990.

5. Muschik, W. and Berezovski, A. Thermodynamic interaction between two discrete systems in non-equilibrium. J. Non-equilib. Thermodyn., 2004, 29, 237–255.
doi:10.1515/JNETDY.2004.053

6. Muschik, W. and Berezovski, A. Non-equilibrium contact quantities and compound deficiency at interfaces between discrete systems. Proc. Estonian Acad. Sci. Phys. Math., 2007, 56, 133–145.

7. Berezovski, A. and Maugin, G. A. Simulation of thermoelastic wave propagation by means of a composite wave-propagation algorithm. J. Comput. Phys., 2001, 168, 249–264.
doi:10.1006/jcph.2001.6697

8. Bale, D. S., LeVeque, R. J., Mitran, S. and Rossmanith, J. A. A wave propagation method for conservation laws and balance laws with spatially varying flux functions. SIAM J. Sci. Comput., 2003, 24, 955–978.
doi:10.1137/S106482750139738X


Back to Issue