ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Density functional theory calculations using the finite element method; pp. 155–178

Full article in PDF format | doi: 10.3176/proc.2008.3.06

Authors
Ondřej Čertík, Jiří Vackář, Jiří Plešek

Abstract
We propose a method to solve Kohn–Sham equations and to calculate electronic states, total energy, and material properties of non-crystalline, non-periodic structures with l-dependent fully non-local real-space ab initio pseudopotentials using finite elements. Contrary to the variety of well established k-space methods, which are based on Bloch's theorem and applicable to periodic structures, we do not assume periodicity in any respect. Precise ab initio environment-reflecting pseudopotentials that have been applied in the k-space, plane wave approach so far, are connected with real space finite-element basis in this work. The main expected asset of the present approach is the combination of efficiency and high precision of ab initio pseudopotentials with applicability not restricted to periodic environment.
References

1. Blochl, P. E. Generalized separable potentials for electronic-structure calculations. Phys. Rev. B, 1990, 41(5414).

2. Dreizler, R. M. and Gross, E. K. U. Density Functional Theory. Springer-Verlag, 1990.

3. Eyert, V. A comparative study on methods for convergence acceleration of iterative vector sequences. J. Comp. Phys., 1996, 124, 271–285.
doi:10.1006/jcph.1996.0059

4. Hamman, D. R., Schlüter, M. and Chiang, C. Norm-conserving pseudopotentials. Phys. Rev. Lett., 1979, 43, 1494.
doi:10.1103/PhysRevLett.43.1494

5. Martin, R. M. Electronic Structure: Basic Theory and Practical Methods. Cambridge University Press, 2005.

6. Pickett, W. E. Pseudopotential methods in condensed matter applications. Comp. Phys. Rep., 1989, 9, 115–198.
doi:10.1016/0167-7977(89)90002-6

7. Srivastava, G. P. Broyden’s method for self-consistent field convergence acceleration. J. Phys. A, 1984, 17, L317–L321.
doi:10.1088/0305-4470/17/6/002

8. Vanderbilt, D. and Louie, S. G. Total energies of diamond (111) surface reconstructions by a linear combination of atomic orbitals method. Phys. Rev. B, 1984, 30(6118).


Back to Issue