eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Long-distance liquid transport in plants; pp. 179–203

Full article in PDF format | doi: 10.3176/proc.2008.3.07

Natalya N. Kizilova

A brief review of the thermodynamic and fluid dynamic problems related to long-distance liquid flow and signalling in plants is presented. Geometrical parameters of the plant leaf venation are measured and the general relationships between the diameters and lengths of the veins, branching angles at the vein bifurcations, and the corresponding drainage areas are obtained. The same relationships had been obtained before for the bifurcations of the pathways in the arterial and bronchial systems of mammals and humans; tree trunks, branches and roots; and river basins. The identity of the principle of design of the transportation systems in the nature can be understood on the concept of optimal networks that provide liquid delivery at total minimal energy costs. The corresponding models of the optimal vessels and branching systems of vessels with impermeable and permeable walls are presented and discussed.

    1. Anisimov, A. V. and Ratkevich, S. Transport of Water in Plants. Investigation by Impulse NMR Method. Nauka, Moscow, 1992 (in Russian).

    2. Aumann, C. A. and Ford, D. E. Modeling tree water flow as an unsaturated flow through a porous medium. J. Theor. Biol., 2002, 219, 415–429.

    3. Canny, M. J. Embolisms and refilling in the maize leaf lamina, and the role of the protoxylem lacuna. Am. J. Bot., 2001, 88, 47–51.

    4. Chernousko, F. L. Optimal structure of branching pipelines. Prikl. Matem. Mech., 1977, 41, 376–383 (in Russian).

    5. Chklovskii, D. B. and Stepanyants, A. Power-law for axon diameters at branch point. BMC Neurosci., 2003, 4, 18–25.

    6. Dixon, H. H. Transpiration and the Ascent of Sap in Plants. Macmillan and Co., London, 1914.

    7. Dixon, H. H. and Joly, J. On the ascent of sap. Phylos. Trans. R. Soc. London, B, 1895, 186, 563–576.

8. Edwards, E. J. Correlated evolution of stem and leaf hydraulic traits in Pereskia (Cactaceae). New Phytol., 2006, 172, 479–489.

    9. Ellerby, D. J. and Ennos, A. R. Resistances to fluid flow of model xylem vessels with simple and scalariform perforation plates. J. Exp. Bot., 1998, 49, 979–985.

  10. Esau, K. Anatomy of Seed Plants. 2nd edn. John Wiley & Sons, 1977.

  11. Ewers, F. W., Fisher, J. B. and Chiu, Sh.-T. Water transport in the liana Bauhinia fassoglensis (Fabaceae). Plant Physiol., 1989, 91, 1625–1631.

  12. Gary, Ch., Le Bot, J., Frossard, J.-S. and Andriolo, J. L. Ontogenic changes in the construction cost of leaves, stems, fruits, and roots of tomato plants. J. Exp. Bot., 1998, 49, 59–68.

  13. Giacometti, A. Local minimal energy landscapes in river networks. Phys. Rev. Ser. E, 2000, 62, 6042–6051.

  14. Grygoryan, S. S. and Gotsyridze, N. Sh. Optimal organization of branching vascular network at pulsatile flow. In Mechanics of Biological Continuous Media. Moscow University Press, Moscow, 1986, 125–131.

  15. Hack, J. T. Studies of longitudinal profiles in Virginia and Maryland. US Geol. Surv. Prof. Pap., 1957.

  16. Henton, S. M., Greaves, A. J., Piller, G. J. and Minichin, P. E. H. Revisiting the Münch pressureflow hypothesis for long-distance transport of carbohydrates: Modelling the dynamics of solute transport inside a semipermeable tube. J. Exp. Bot., 2002, 53, 1411–1419.

  17. Hickey, L. J. Classification of the architecture of dycotyledonous leaves. Am. J. Bot., 1973, 60, 17–33.

  18. Holbrook, N. M., Ahrens, E. T., Burns, M. J. and Zwieniecki, M. A. In vivo observation of cavitation and embolism repair using magnetic resonance imaging. Plant. Physiol., 2001, 126, 27–31.

  19. Hölttä, T. H., Vesala, W. T., Perämäki, M. and Nikimaa, E. Relationships between embolism, stem water tension, and diameter changes. J. Theor. Biol., 2002, 215, 23–38.

  20. Honda, H. and Fisher, J. B. Tree branch angle: Maximizing effective leaf area. Science, 1978, 1999, 888–889.

  21. Horton, R. E. Erosional development of streams and their drainage basins; hydrophysical approach to quantitative geomorphology. Bull. Geol. Soc. Am., 1945, 56, 275–370.

  22. Huang, W., Yen, R. T., McLaurine, M. and Bledsoe, G. Morphometry of the human pulmonary vasculature. J. Appl. Physiol., 1996, 81, 2123–2133.

  23. Kargol, M. Osmotic, hydromechanic and energetic properties of modified Münch’s model. Gen. Physiol. Biophys., 1994, 13, 3–19.

  24. Kargol, M., Kosztolowicz, T., Markovski, A. and Przestalski, S. Energetic aspects of water transport across the plant root. Acta Physiol. Plant., 1995, 17, 327–332.

  25. Kargol, M., Suchanek, G., Przestalski, S. and Kargol, A. Modification of integration system of long-distance transport of water in plants. Where the plant has its heart? Cur. Topics Biophys., 2003, 27, 3–9.

  26. Karmanov, V. G., Lialin, O. O., Mamulashvili, G. G. et al. Water exchange dynamics of high plants and its informational role. Physiol. Biochim. Vysshikh Rastenij, 1974, 6, 69–75 (in Russian).

  27. Karmanov, V. G. and Meleshchenko, S. N. Mechanism of auto-oscillations of water metabolism in plants. Biofizika, 1982, 27, 144–149 (in Russian).

  28. Kedem, O. and Katchalsky, A. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim. Biophys. Acta, 1958, 27, 229–246.

  29. Kizilova, N. N. Computational approach to optimal transport network construction in biomechanics. Lecture Notes Comp. Sci., 2004, 3044, 476–485.

  30. Kizilova, N. N. Construction principles and control over transport systems organization in biological tissues. In Physics and Control (Fradkov, A. L. and Churilov, A. N., eds). IEEE Computer Society, Washington, 2003, Vol. 1, 303–308.

  31. Kizilova, N. N. Hydraulic properties of branching pipelines with permeable walls. Int. J. Fluid Mech. Res., 2005, 32, 98–109.

  32. Kizilova, N. N. Liquid filtration in a microcirculatory cell of the plant leaf: A lumped parameter model. Int. J. Fluid Mech. Res., 2007, 34, 572–588.

  33. Kizilova, N. N. Motion of water and solvents in plant leaves: Interrelation of hydromechanical and osmotic factors. In Liquid Matter Conference. Book of Abstracts. Utreht, 2005, 74.

  34. Kizilova, N. Optimal long-distance transport systems in nature: Control and applications. In International Congress on Industrial and Applied Mathematics. Abstract Book, 2007, 286–287.

  35. Kizilova, N. N. Optimization of branching pipelines on basis of design principles in Nature. In Proceedings of the European Congress on Computational Methods in Applied Sciences. Finland, 2004, Vol. 1, 317–328.

  36. Kizilova, N. N. Thermodynamic model of heat and mass transfer and motion of liquids in plant leaves. In 2-nd International conference “Physics of liquid matter: modern problems”, Book of Abstracts, 2003, 173.

  37. Kizilova, N. N. and Popova, N. A. Criterions of optimum performance of branching transport system of alive nature. Kharkov National University Vestnik. Ser. Matem., Priklad. Matem., Mekh., 1999, 444, 148–156.

  38. Kizilova, N. N. and Popova, N. A. Investigation of transport systems of leaves. Probl. Bion., 1999, 51, 71–79 (in Russian).

  39. Kizilova, N. N. and Posdniak, L. O. Biophysical mechanisms of long-distance transport of liquids and signaling in high plants. Biophys. Bull., 2005, 15, 99–103.

  40. Kizilova, N. N. and Stolkiner, M. G. Investigation of liquid transport and the structure of optimal microcirculatory cell. Probl. Bion., 2002, 57, 103–108.

  41. Kobari, M., Gotoh, F., Fukuuchi, Y., Tanaka, K., Suzuki, N. and Uematsu, D. Blood flow velocity in the pial arteries of cats, with particular reference to the vessel diameter. J. Cereb. Blood Flow Metab., 1984, 4, 110–114.

  42. Kursanov, A. L. Transport of Assimilates in Plants. Nauka, Moscow, 1976 (in Russian).

  43. Kushnirenko, M. D., Pecherskaya, S. N., Bashtovaya, S. I. et al. Influence of chemical substances on kinetics of water exchange in leaves. Biofizika, 1991, 317, 509–511 (in Russian).

  44. La Barbera, M. Principles of design of fluid transport systems in zoology. Science, 1990, 249, 992–1000.

  45. Lampinen, M. J. and Noponen, T. Thermodynamic analysis of the interaction of the xylem water and phloem sugar solution and its significance for the cohesion theory. J. Theor. Biol., 2003, 224, 285–298.

  46. Lazareva, N. P., Borisova, T. A. and Zolkevitch, V. N. On auto-oscillating character of pumping action of Zea mays L. root system. Izv. AN SSSR, 1986, 761–764 (in Russian).

  47. Lighthill, M. J. Physiological fluid dynamics: A survey. J. Fluid Mech., 1972, 52, 475–497.

  48. Linton, M. J. and Nobel, P. S. Loss of water transport capacity due to xylem cavitation in roots of two cam succulents. Am. J. Bot., 1999, 86, 1538–1543.

  49. Mall, F. P. Die Blut und Lymphwege in Dunndarm des Hundes. Abhandlungen der mathematisch-physischen Classe der koniglich Sachsischen. Ges. Wissensch., 1888, 14, 151–200.

  50. Mamisashvili, V. A. and Babunashvili, M. K. Criterium of optimal function of the systems of large and small pial apteries. Fiziol. Zh. SSSR, 1975, 61, 1501–1506 (in Russian).

  51. Martre, P., Cochard, H. and Durand, J. L. Hydraulic architecture and water flow in growing grass tillers (Festuca arundinacea Schreb.). Plant Cell Environ., 2001, 24, 65–76.

  52. Mayrovitz, H. N. and Roy, J. Microvascular blood flow: Evidence indicating a cubic dependence on arteriolar diameter. Am. J. Physiol., 1983, 245, 1031–1038.

  53. McCulloh, K. A., Sperry, J. S. and Adler, F. R. Water transport in plants obeys Murray’s law. Nature, 2003, 421, 939–942.

  54. Meinzer, F. C., Woodruff, D. R., Domec, J.-Ch. et al. Coordination of leaf and stem water transport properties in tropical forest trees. Oecologia, 2008, 156, 31–41.

  55. Melkumjanz, A. M. Optimal structure of arterial network of muscles. Bull. Exp. Biol. Med., 1978, 9, 259–262.

  56. Metzger, M. G. and Krasnov, M. A. Genetic control of branching morphogenesis. Science, 1999, 284, 1635–1639.

  57. Miller, W. S. The structure of the lung. J. Morphol., 1893, 8, 165–188.

  58. Münch, E. Stoffbewegungen in der Pflanze. Verlag Gustav Fisher, Jena, 1930.

  59. Murray, C. D. The physiological principle of minimum work. I. The vascular system and the cost of blood volume. Proc. Natl. Acad. Sci. USA, 1926, 12, 207–214.

  60. Murray, C. D. The physiological principle of minimum work applied to the angle of branching of arteries. J. Gen. Physiol., 1926, 9, 835–841.

  61. Nardini, A., Salleo, S. and Raimondo, F. Changes in leaf hydraulic conductance correlate with leaf vein embolism in Cercis siliquastrum L. Trees, 2003, 17, 529–534.

  62.  Pachepsky, L. B., Ferreyra, R. A., Collino, D. and Acock, B. Transpiration rates and leaf boundary layer parameters for peanut analyzed with the two-dimensional model 2DLEAF. Biotronics, 1999, 28, 1–28.

  63. Pelletier, J. D. and Turcotte, D. L. Shapes of river networks and leaves: Are they statistically similar? Philos. Trans. R. Soc. Lond. Ser. B, 2000, 355, 307–311.

  64. Polevoj, V. V. Plant Physiology. Vysshaya Shkola, Moscow, 1989.

  65. Poluektov, R. A., Kumakov, V. A. and Vasylenko, G. V. Modeling of transpiration of agricultural plants. Plant Physiol., 1997, 44, 68–73.

  66. Pries, A. R., Secomb, T. W. and Gaehtgens, P. Design principles of vascular beds. Circ. Res., 1995, 77, 1017–1023.

  67. Rand, R. H. Fluid mechanics of green plants. Ann. Rev. Fluid Mech., 1983, 15, 39–45.

  68. Rashevsky, N. Models and mathematical principles in biology. In Theoretical and Mathematical Biology. Mir, Moscow, 1968, 48–66.

  69. Regirer, S. A. On the approximate theory of motion of a viscous incompressible fluid in the tubes with permeable walls. Zh. Tekhn. Fiz., 1960, 30, 639–643 (in Russian).

  70. Regirer, S. A. and Shadrina, N. H. Blood flow in a capillary cell of muscle: 2d effects. Izv. AN SSSR, Ser. MZG, 1989, 5, 94–100 (in Russian).

  71. Rosen, R. Optimality Principles in Biology. Plenum Press, New York, 1967.

  72. Sack, L, Streeter, Ch. M. and Holbrook, N. M. Hydraulic analysis of water flow through leaves of sugar maple and red oak. Plant Physiol., 2004, 134, 1824–1833.

  73. Sack, L., Tyree, M. T. and Holbrook, N. M. Leaf hydraulic architecture correlates with regeneration irradiance in tropical rainforest trees. New Phytol., 2005, 167, 403–413.

  74. Sack, L. and Frole, K. Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees. Ecology, 2006, 87, 483–491.

  75. Sack, L. and Holbrook, N. M. Leaf hydraulics. Annu. Rev. Plant Biol., 2006, 57, 361–381.

  76. Scholander, P. F., Hammel, H. T. and Hemmingsen, E. A. Sap pressure in vascular plant. Science, 1965, 148, 339–346.

  77. Schreiner, W., Neumann, F., Neumann, M., End, A. and Müller, M. R. Structural quantification and bifurcation symmetry in arterial tree models generated by constrained constructive optimization. J. Theor. Biol., 1996, 180, 161–174.

  78. Schulte, P. J. Water flow through a 20-pore perforation plate in vessels of Liquidambar styraciflua. J. Exp. Bot., 1999, 50, 1179–1187.

  79. Schulte, P. J. and Brooks, J. R. Branch junctions and the flow of water through xylem in Douglas-fir and ponderosa pine stems. J. Exp. Bot., 2003, 54, 1597–1605.

  80. Shoshenko, K. A., Golub, A. S., Brod, V. I. et al. Architectonics of the Blood Vasculatures. Nauka, Novosibirsk, 1982 (in Russian).

  81. Sinclair, K. and Ball, R. C. Mechanism for global optimization of river networks from local erosion rules. Phys. Rev. Lett., 1996, 76, 3360–3363.

  82. Sleicher, R. O. The Plant Water Regime. Mir, Moscow, 1970 (in Russian).

  83. Smith, A. M. Xylem transport and negative pressures sustainable by water. Ann. Bot., 1994, 74, 647–651.

  84. Sun, T., Meakin, P. and Jossang, T. Minimum energy dissipation river networks with fractal boundaries. Phys. Rev. Ser. E, 1995, 51, 5353–5359.

  85. Thompson, M. V. and Holbrook, N. M. Scaling phloem transport: Water potential equilibrium and osmoregulatory flow. Plant Cell Environ., 2003, 26, 1561–1577.

  86. Thompson, M. V. Scaling phloem transport: Elasticity and pressure–concentration waves. J. Theor. Biol., 2005, 236, 229–241.

  87. Turcotte, D. L., Pelletier, J. D. and Newman, W. I. Networks with side branching in biology. J. Theor. Biol., 1998, 193, 577–592.

  88. Turgeon, R. and Webb, J. A. Growth inhibition by mechanical stress. Science, 1971, 174, 961–962.

  89. Tyree, M. T. and Dixon, M. A. Cavitation events in Thuja occidentalis: Ultrasonic acoustic emissions from the sapwood can be measured. Plant Physiol., 1983, 72, 1094–1099.

  90. Tyree, M. T. and Sperry, J. S. Vulnerability of xylem to cavitation and embolism. Annu. Rev. Plant Physiol. Mol. Biol., 1989, 40, 19–38.

  91. Tyree, M. T. The Cohesion-tension theory of sap ascent: Current controversies. J. Exp. Bot., 1997, 48, 1753–1765.

  92. Uylings, H. B. M. Optimization of diameters and bifurcation angles in lung and vascular tree structures. Bull. Math. Biol., 1977, 39, 509–519.

  93. van Bavel, E. and Spaan, J. A. E. Branching patterns in the porcine coronary arterial tree. Estimation of flow heterogeneity. Circ. Res., 1992, 71, 1200–1212.

  94. van den Honert, T. H. Water transport in plants as a catenary process. Discuss. Faraday Soc., 1948, 3, 146–153.

  95. Vesala, W. T., Hölttä, T. H., Perämäki, M. and Nikimaa, E. Refilling of a hydraulically isolated embolized xylem vessel: Model calculations. Ann. Bot., 2003, 91, 419–428.

  96. Vico, P. G., Kyriacos, S., Heymans, O., Louryan, S. and Cartilier, L. Dynamic study of the extraembryonic vascular network of the chick embryo by fractal analysis. J. Theor. Biol., 1998, 195, 525–532.

  97. Wagner, O. E. Anisotropy of wave velocities in plants: Gravitropism. Physiol. Chem. Phys. Med. NMR, 1996, 28, 173–186.

  98. Westgate, M. E. and Boyer, J. S. Transpiration- and growth-induced water potentials in maize. Plant Physiol., 1984, 74, 882–889.

  99. Wiebel, E. R. Morphometry of the Human Lung. Academic Press, New York, 1963.

100. Young, T. Hydraulic investigations subservient to an intended Croonian lecture on the motion of the blood. Philos. Trans. Roy. Soc., 1808, 98, 164–186.

101. Zamir, M. Shear forces and blood vessel radii in the cardiovascular system. J. Gen. Physiol., 1977, 69, 449–462.

102. Zamir, M. and Bigelov, D. C. Cost of departure from optimality in arterial branching. J. Theor. Biol., 1984, 109, 401–409.

103. Zamir, M. Distributing and delivering vessels of the human heart. J. Gen. Physiol., 1988, 91, 725–735.

104. Zenin, O. K., Kizilova, N. N. and Philippova, E. N. Studies on the structure of human coronary vasculature. Biophysics, 2007, 52, 499–503.

105. Zhi, W., Ming, Zh. and Qi-Xing, Y. Modeling of branching structures of plants. J. Theor. Biol., 2001, 209, 383–394.

106. Zialalov, A. A. Physiological and Thermodynamic Aspects of Water Transport in Plants. Nauka, Moscow, 1985 (in Russian).

107. Zolkevich, V. N., Gusev, N. A., Kaplya, N. A. et al. Water Exchange in Plants. Nauka, Moscow, 1989 (in Russian).

Back to Issue