eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2021): 1.024
Tribological and circular economy aspects of polypropylene/cotton fibre hybrid composite; pp. 186–193
PDF | 10.3176/proc.2022.2.03

Abrar Hussain, Vitali Podgursky, Dmitri Goliandin, Maksim Antonov, Rahul Kumar, Nikhil Kamboj, Ramin Rahmani Ahranjani, Mart Viljus, Tahir Ahmad, Muhammad Mubashir Farid, Muhammad Mujtaba Abbas, Andres Krumme, Illia Krasnou

The circular economy is emerging as green technology solution for polymer and composite industries. However, the use of circular economy as an industrial practice is still a global challenge. In this article, polypropylene-cotton hybrid composite was developed using different amounts of cotton fibre waste (0, 10, 30, 40 wt%). Scanning electron microscope (SEM), tribometer, Rockwell hardness tester and binocular microscope were used for investigations of composite surface, hardness and coefficient of friction (COF). The mean coefficient of friction values was 0.64, 0.75, 0.88 and 0.94 for pure propylene, 10, 30 and 40% of cotton reinforced composites, respectively. The scanning electron microscopy characterization of hybrid composite revealed the voids, porosity and asperities due to random fibres orientation. The Rockwell hardness value of composites was increased due to rise of fibre fraction. Based on the COF values, hardness and surface characterization, polypropylene-cotton reinforced hybrid composite could be used functionally for thermal and sound applications.


1. Hussain, A., Kamboj, N., Podgurski, V., Antonov, M. and Goliandin, D. Circular economy approach to recycling technologies of postconsumer textile waste in Estonia: a review. Proc. Estonian Acad. Sci., 2021, 70(1), 82–92.

2. Mahdi, E. and Dean, A. The effect of filler content on the tensile behavior of polypropylene/cotton fiber and poly (vinyl chloride)/cotton fiber composites. Materials, 2020, 13(3), 753.

3. Jayaraman, K. Manufacturing sisal-polypropylene com­posites with minimum fibre degradation. Compos. Sci. Technol., 2003, 63(3–4), 367–374.

4. Satapathy, S., Nando, G. B., Jose, J. and Nag, A. Mechanical properties and fracture behavior of short PET fiber-waste polyethylene composites. J. Reinf. Plast. Compos., 2008, 27(9), 967–984.

5. Anuar, N. I. S., Zakaria, S., Gan, S., Chia, C. H., Wang, C. and Harun, J. Comparison of the morphological and mechanical properties of oil palm EFB fibres and kenaf fibres in nonwoven reinforced composites. Ind. Crops Prod., 2019, 127, 55–65.

6. Saghrouni, Z., Baillis, D. and Jemni, A. Composites based on Juncus maritimus fibers for building insulation. Cem. Concr. Compos., 2020, 106, 103474.

7. El-Tayeb, N. S. M. Abrasive wear performance of untreated SCF reinforced polymer composite. J. Mater. Process. Technol., 2008, 206(1), 305–314.

8. El-Sayed, A. A., El-Sherbiny, M. G., Abo-El-Ezz, A. S. and Aggag, G. A. Friction and wear properties of polymeric composite materials for bearing applications. Wear, 1995, 184(1), 45–53.

9. Yousif, B. F. and El-Tayeb, N. S. M. Mechanical and wear properties of oil palm and glass fibres reinforced polyester composites. Int. J. Precis. Technol., 2009, 1(2), 213–222.

10. Thilagavathi, G., Karan, C. P. and Thenmozhi, R.  Development and investigations of kapok fiber based needle punched nonwoven as eco-friendly oil sorbent. J. Nat. Fibers, 2018, 17(1), 18–27.

11. Jayaraman, K. Manufacturing sisal-polypropylene com­posites with minimum fibre degradation. Compos. Sci. Technol., 2003, 63(3–4), 367–374.

12. Antonov, M., Kers, J., Liibert, L., Shuliak, V., Smirnov, A. and Bartolomé, J. F. Effect of basalt reinforcement type and content on the abrasive wear behaviour of polymer com­posites. Key Eng. Mater., 2016, 674, 181–188.

13. Chand, N., Dwivedi, U. K. and Acharya, S. K. Anisotropic abrasive wear behaviour of bamboo (Dentrocalamus strictus). Wear, 2007, 262(9–10), 1031–1037.

14. Subramonian, S., Ali, A., Amran, M., Sivakumar, L. D., Salleh, S. and Rajaizam, A. Effect of fiber loading on the mechanical properties of bagasse fiber-reinforced poly­propylene composites. Adv. Mech. Eng., 2016, 8(8), 1687814016664258.

15. Singh Gill, N. and Yousif, B. F. Wear and frictional performance of betelnut fibre-reinforced polyester com­posite. P. I. Mech. Eng. J.-J. Eng., 2009, 223(2), 183194.

16. Yousif, B. F. Frictional and wear performance of polyester composites based on coir fibres. P. I. Mech. Eng. J.-J. Eng., 2009, 223(1), 5159.

17. Harsha, A. P. and Tewari, U. S. Tribological studies on glass fiber reinforced polyetherketone composites. J. Reinf. Plast. Compos., 2004, 23(1), 6582.

18. Hussain, A., Podgursky, V., Antonov, M., Abbas, M. M. and Awan, M. R. Tungsten carbide material tribology and circular economy relationship in polymer and composites industries. Proc. Inst. Mech. Eng. L., 2022, 236(4), 1–8.

19. Hussain, A., Podgursky, V., Goljandin, D., Viljus, M., Antonov, M., Bogatov A. and Krasnou, I. Tribological and mechanical properties investigations of post-consumer cotton textiles. Solid State Phenom., 2021, 320, 97–102.  

20. Hussain, A., Podgursky, V., Goljandin, D. and Antonov, M. TiAlN coatings tribology for textile machinery parts. Proc. Estonian Acad. Sci., 2021, 70(2), 163–171.

Back to Issue