ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2021): 1.024
Optical solitons in fiber Bragg gratings with quadratic-cubic law of nonlinear refractive index and cubic-quartic dispersive reflectivity; pp. 165–177
PDF | 10.3176/proc.2022.2.05

Authors
Elsayed M. E. Zayed, Mohamed E. M. Alngar, Anjan Biswas, Mehmet Ekici, Salam Khan, Abdullah K. Alzahrani, Milivoj R. Belic
Abstract

This paper recovers cubic-quartic perturbed solitons in fiber Bragg gratings with quadratic-cubic law nonlinear refractive index. The unified Riccati equation expansion method and the modified Kudryashov’s approach make this retrieval of soliton solutions possible. The parameter constraints, for the existence of such solitons, are also presented.

References

1. Atai, J. and Malomed, B. Families of Bragg grating solitons in a cubic-quintic medium. Phys. Lett. A, 2001, 284, 247–252.
https://doi.org/10.1016/S0375-9601(01)00314-0

2. Atai, J. and Malomed, B. Gap solitons in Bragg gratings with dispersive reflectivity. Phys. Lett. A, 2005, 342, 404–412.
https://doi.org/10.1016/j.physleta.2005.05.081

3. Biswas, A., Vega-Guzman, J., Mahmood, M. F., Khan, S., Zhou, Q., Moshokoa, S. P. and Belic, M. Solitons in optical fiber Bragg gratings with dispersive reflectivity. Optik, 2019, 182, 119–123.
https://doi.org/10.1016/j.ijleo.2018.12.180

4. Biswas, A., Ekici, M., Sonmezoglu, A. and Belic, M. R. Solitons in optical fiber Bragg gratings with dispersive reflectivity by extended trial function method. Optik, 2019, 182, 88–94.
https://doi.org/10.1016/j.ijleo.2018.12.156

5. Biswas, A., Ekici, M., Sonmezoglu, A. and Belic, M. R. Optical solitons in fiber Bragg gratings with dispersive reflectivity for parabolic law non-linearity by extended trial function method. Optik, 2019, 183, 595–601.
https://doi.org/10.1016/j.ijleo.2019.02.125

6. Chowdhury, S. A. M. S. and Atai, J. Stability of Bragg grating solitons in a semilinear dual core system with dispersive reflectivity. IEEE J. Quantum Electron., 2014, 50, 458–465.
https://doi.org/10.1109/JQE.2014.2318206

7. Chowdhury, S. A. M. S. and Atai, J. Interaction dynamics of Bragg grating solitons in a semilinear dual-core system with dispersive reflectivity. J. Mod. Optik, 2016, 63, 2238–2245.
https://doi.org/10.1080/09500340.2016.1193242

8. Chowdhury, S. A. M. S. and Atai, J. Moving Bragg grating solitons in a semilinear dual-core system with dispersive reflectivity. Sci. Rep., 2017, 7, 4021. 
https://doi.org/10.1038/s41598-017-04179-6

9. Dasanayaka, S. and Atai, J. Stability of Bragg grating solitons in a cubic-quintic nonlinear medium with dispersive reflectivity. Phys. Lett. A, 2010, 375, 225–229. 
https://doi.org/10.1016/j.physleta.2010.10.043

10. Gonzalez-Gaxiola, O., Biswas, A., Mallawi, F. and Belic, M. R. Cubic-quartic bright optical solitons with improved Adomian decomposition method. J. Adv. Res., 2020, 21, 161–167. 
https://doi.org/10.1016/j.jare.2019.10.004

11. Islam, M. J. and Atai, J. Stability of Bragg grating solitons in a semilinear dual-core system with cubic-quintic non-linearity. Nonlinear Dyn., 2017, 87, 1693–1701. 
https://doi.org/10.1007/s11071-016-3145-y

12. Neill, D. R., Atai, J. and Malomed, B. A. Dynamics and collisions of moving solitons in Bragg gratings with dispersive reflectivity. J. Opt. A, 2008, 10(8), 085105. 
https://doi.org/10.1088/1464-4258/10/8/085105

13. Yildirim, Y., Biswas, A., Jawad, A. J. M., Ekici, M., Zhou, Q., Khan, S.A., Alzahrani, A. K. and Belic, M. R. Cubic-quartic optical solitons in birefringent fibers with four forms of nonlinear refractive index by exp-function expansion. Results Phys., 2020, 16, 102913. 
https://doi.org/10.1016/j.rinp.2019.102913

14. Zayed, E. M. E., Alngar, M. E. M., Biswas, A., Ekici, M., Triki, H., Alzahrani, K. and Belic, M. R. Chirped and chirp-free optical solitons in fiber Bragg gratings having dispersive reflectivity with polynomial form of non-linearity using sub-ODE approach. Optik, 2020, 204, 164096. 
https://doi.org/10.1016/j.ijleo.2019.164096

15. Zayed, E. M. E., El-Horbaty, M. and Alngar, M. E. M. Cubic-quartic optical soliton perturbation having four laws non-linearity with a prolific integration algorithm. Optik, 2020, 220, 165121. 
https://doi.org/10.1016/j.ijleo.2020.165121

16. Zayed, E. M. E., Alngar, M. E. M., Biswas, A., Kara, A. H., Ekici, M., Alzahrani, A. K. and Belic, M. R. Cubic-quartic optical solitons and conservation laws with Kudryashov’s sextic power-law of refractive index. Optik, 2021, 227, 166059.
https://doi.org/10.1016/j.ijleo.2020.166059

17. Zayed, E. M. E., Alngar, M. E. M., Biswas, A., Triki, H., Yildirim, Y. and Alshomrani, A. S. Chirped and chirp-free optical solitons in fiber Bragg gratings with dispersive reflectivity having quadratic-cubic non-linearity by sub-ODE approach. Optik, 2020, 203, 163993.
https://doi.org/10.1016/j.ijleo.2019.163993

18. Zayed, E. M. E. and Alngar, M. E. M. Optical soliton solutions for the generalized Kudryashov equation of propagation pulse in optical fiber with power nonlinearities by three integration algorithms. Math. Models Methods Appl. Sci., 2021, 44, 315–324.
https://doi.org/10.1002/mma.6736

19. Zayed, E. M. E., Alngar, M. E. M., Biswas, A., Asma, M., Ekici, M., Alzahrani, A. K. and Belic, M. R. Pure-cubic optical soliton perturbation with full non-linearity by unified Riccati equation expansion. Optik, 2020, 223, 165445.
https://doi.org/10.1016/j.ijleo.2020.165445

20. Zayed, E. M. E., Alngar, M. E. M., Biswas, A., Asma, M., Ekici, M., Alzahrani, A. K. and Belic, M. R. Optical solitons and conservation laws with generalized Kudryashov’s law of refractive index. Chaos Solitons Fractals, 2020, 139, 110284. 
https://doi.org/10.1016/j.chaos.2020.110284

21. Kudryashov, N. A. First integrals and general solution of the traveling wave reduction for Schro ̈dinger equation with anti-cubic nonlinearity. Optik, 2019, 185, 665–671.
https://doi.org/10.1016/j.ijleo.2019.03.167

22. Kudryashov, N. A. General solution of traveling wave reduction for the Kundu–Mukherjee–Naskar model. Optik, 2019, 186, 22–27.
https://doi.org/10.1016/j.ijleo.2019.04.072

23. Kudryashov, N. A. First integrals and general solution of the Fokas–Lenells equation. Optik, 2019, 195, 163135.
https://doi.org/10.1016/j.ijleo.2019.163135

24. Kudryashov, N. A. Mathematical model of propagation pulse in optical fiber with power nonlinearities. Optik, 2020, 212, 164750.
https://doi.org/10.1016/j.ijleo.2020.164750

25. Kudryashov, N. A. A generalized model for description of propagation pulses in optical fiber. Optik, 2019, 189, 42–52.
https://doi.org/10.1016/j.ijleo.2019.05.069

26. Kudryashov, N. A. and Antonova, E. V. Solitary waves of equation for propagation pulse with power nonlinearities. Optik, 2020, 217, 164881.
https://doi.org/10.1016/j.ijleo.2020.164881

27. Kudryashov, N. A. Method for finding highly dispersive optical solitons of nonlinear differential equations. Optik, 2020, 206, 163550.
https://doi.org/10.1016/j.ijleo.2019.163550

28. Kudryashov, N. A. Highly dispersive optical solitons of equation with various polynomial nonlinearity law. Chaos Solitons Fractals, 2020, 140, 110202.
https://doi.org/10.1016/j.chaos.2020.110202

29. Kudryashov, N. A. Periodic and solitary waves in optical fiber Bragg gratings with dispersive reflectivity. Chin. J. Phys., 2020, 66, 401–405.
https://doi.org/10.1016/j.cjph.2020.06.006

30. Kudryashov, N. A. Highly dispersive optical solitons of an equation with arbitrary refractive index. Regul. Chaotic Dyn., 2020, 25(6), 537–543.
https://doi.org/10.1134/S1560354720060039

31. Kudryashov, N. A. Revised results of Khalida Bibi on the Radhakrishnan–Kundu–Lakshmanan equation. Optik, 2021, 240, 166898.
https://doi.org/10.1016/j.ijleo.2021.166898

32. Biswas, A. Optical soliton cooling with polynomial law of nonlinear refractive index. J. Opt., 2020, 49(4), 580–583.
https://doi.org/10.1007/s12596-020-00644-0

33. Yildirim, Y., Biswas, A., Kara, A. H., Ekici, M., Khan, S. and Belic, M. R. Optical soliton perturbation and conservation law with Kudryashov’s refractive index having quadrupled power-law and dual form of generalized nonlocal nonlinearity. SPQEO, 2021, 24(1), 64–70.
https://doi.org/10.1016/j.ijleo.2021.166966

34. Zayed, E. M. E., Alngar, M. E. M., Biswas, A., Kara, A. H., Moraru, L., Ekici, M., Alzahrani, A. K. and Belic, M. R. Solitons and conservation laws in magneto-optic waveguides with triple-power law nonlinearity. J. Opt., 2020, 49(4), 584–590. 
https://doi.org/10.1007/s12596-020-00650-2

35. Zayed, E. M. E., Al-Nowehy, A. G., Alngar, M. E. M., Biswas, A., Asma, Ekici, M., Alzahrani, A. K. and Belic, M. R. Highly dispersive optical solitons in birefringent fibers with four nonlinear forms using Kudryashov’s approach. J. Opt., 2021, 50(1), 120–131. 
https://doi.org/10.1007/s12596-020-00668-6

36. Zayed, E. M. E., Shohib, R. M. A., Alngar, M. E. M., Biswas, A., Ekici, M., Khan, S., Alzahrani, A. K. and Belic, M. R. Optical solitons and conservation laws associated with Kudryashov’s sextic power-law nonlinearity of refractive index. Ukr. J. Phys. Opt., 2021, 22(1), 38–49. 
https://doi.org/10.3116/16091833/22/1/38/2021

37. Biswas, A., Yildirim, Y., Yasar, E., Triki, H., Alshomrani, A. S., Ullah, M. Z., Zhou, Q., Moshokoa, S. P. and Belic, M. R. Optical soliton perturbation with full nonlinearity for Kundu–Eckhaus equation by modified simple equation method. Optik, 2018, 157, 1376–1380. 
https://doi.org/10.1016/j.ijleo.2017.12.108

38. Liu, W., Zhang, Y., Triki, H., Mirzazadeh, M., Ekici, M., Zhou, Q., Biswas, A. and Belic, M. R. Interaction properties of solitonics in inhomogeneous optical fibers. Nonlinear Dyn., 2019, 95(1), 557–563. 
https://doi.org/10.1007/s11071-018-4582-6

39. Triki, H., Biswas, A., Moshokoa, S. P. and Belic, M. R. Optical solitons and conservation laws with quadratic-cubic nonlinearity. Optik, 2017, 128, 63–70. 
https://doi.org/10.1016/j.ijleo.2016.10.010

40. Liu, X., Triki, H., Zhou, Q., Liu, W. and Biswas, A. Analytic study on interactions between periodic solitons with controllable parameters. Nonlinear Dyn., 2018, 94(1), 703–709. 
https://doi.org/10.1007/s11071-018-4387-7

Back to Issue