eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2021): 1.024
Physio-chemical characteristics of strawberry and raspberry: comparison of local and commercial cultivars with their wild relatives in Estonia; pp. 197–207
PDF | 10.3176/proc.2020.3.03

Mailis Vinogradov, Liina Arus, Ain Raal, Andres Meos, Marge Starast

The chemical composition of old local breeds, wild strawberry (Fragaria vesca), and raspberry (Rubus idaeus) has not been studied enough as they may not be profitable. We compared local and commercial strawberry (Fragaria × ananassa) and raspberry (Rubus idaeus) cultivars to natural relatives. In the experiment fruit weight, pH, and chemical characteristics were investigated. In contrast with foreign cultivars, local strawberry and raspberry cultivars had smaller berries and a lower anthocyanin content, but a higher total phenolic and ascorbic acid content. The strawberry cultivar ‘Edu’ had the highest ascorbic acid and ‘Regatt-80’ the highest total phenolic content. The raspberry cultivar ‘Tomo’ had the highest quantity of ascorbic acid and ‘Alvi’ the highest total phenolic content. Due to the higher levels of these bioactive compounds, old local cultivars could be used for the production of nutrient-rich functional food. Wild relatives showed a higher value of dry matter, soluble solids, and anthocyanins than the cultivars. The content of total phenolics in raspberry cultivars and wild raspberries was statistically the same but for strawberries, a higher value was estimated for wild counterparts.



Aaby, K., Mazur, S., Nes, A., and Skrede, G. 2012. Phenolic compounds in strawberry (Fragaria x ananassa Duch.) fruits: composition in 27 cultivars and changes during ripening. Food Chem.132(1), 86–97.

Ahmed, M., Anjum, M. A., Hussain, S., and Khaqan, K. 2014. Biodiversity in morphological and physico-chemical characteristics of wild raspberry (Rubus idaeus L.) germ­plasm collected from temperate region of Azad Jammu & Kashmir (Pakistan). Acta Sci. Pol., Hortorum Cultus13(4), 117–134.

Andrés-Bello, A., Barreto-Palacios, V., García-Segovia, P., Mir-Bel, J., and Martínez-Monzó, J. 2013. Effect of pH on color and tex­ture of food products. Food Eng. Rev.5(3), 158–170.

Arus, L., Kikas, A., Libek, A., and Kaldmäe, H. 2008. Testing five raspberry cultivars of Estonian origin. Acta Hortic.777, January, 161–165.

Aslantas, R., Pirlak, L., and Güleryüz, M. 2007. The nutritional value of wild fruits from the North Eastern Anatolia Region of Turkey. Asian J. Chem.19(4), 3072–3078.

Bobinaite, R., Viškelis, P., and Venskutonis, P. R. 2012. Variation of total phenolics, anthocyanins, ellagic acid and radical scavenging capacity in various raspberry (Rubus spp.) cultivars. Food Chem.132(3), 1495–1501.

Estonian Weather Service. 2017. Observation data. Available at (accessed 30 September 2019).

European Directorate for the Quality of Medicines & Healthcare. 2010. Ascorbic acid. In European Pharmacopoeia, 7th edn, Vol. 2. Monograph 0172011/0253, pp. 1418–1419. Council of Europe, Strasbourg.

Fan, L., Roux, V., Dubé, C., Charlebois, D., Tao, S., and Khanizadeh, S. Effect of mulching systems on fruit quality and phytochemical composition of newly developed strawberry lines. Agric. Food Sci., 2012, 21(2), 132-140.

Faostat. 2017. Crops. Available at (accessed 30 September 2019).

Fredes, C., Montenegro, G., Zoffoli, J. P., Santander, F., and Robert, P. 2014. Comparación de los contenidos de fenoles totales, antocianos totales y la actividad antioxidante de frutos ricos en polifenoles que crecen en Chile. Cienc. Investig. Agrar.41(1), 49–59.

Giampieri, F., Alvarez-Suarez, J. M., Cordero, M. D., Gasparrini, M., Forbes-Hernandez, T. Y., Afrin, S., Santos-Buelga, C., et al. 2017. Strawberry consumption improves aging-associated impairments, mitochondrial biogenesis and functionality through the AMP-activated protein kinase signaling cascade. Food Chem.234, 464–471.

Gündüz, K. and Özdemir, E. 2014. The effects of genotype and growing conditions on antioxidant capacity, phenolic compounds, organic acid and individual sugars of straw­berry. Food Chem.155, 298–303.

Jarić, S., Popović, Z., Mačukanović-Jocić, M., Djurdjević, L., Mijatović, M., Karadžić, B., Mitrović, M., and Pavlović, P. 2007. An ethnobotanical study on the usage of wild medicinal herbs from Kopaonik Mountain (Central Serbia). J. Ethnopharmacol.111(1), 160–175.

Kanodia, L. and Das, S. 2009. A comparative study of analgesic property of whole plant and fruit extracts of Fragaria vesca in experimental animal models. Bangladesh J. Pharmacol.4(1), 35–38.

Kelt, K., Lamp, L., and Piir, R. 1997. Puuviljad, marjad, tervis: toiteväärtus, säilitamine ja kodune töötlemine [Fruits, Berries, Health: Nutrition Value, Preservation and Home Processing]. Valgus, Tallinn (in Estonian).

Labokas, J. and Bagdonaitë, E. 2005. Phenotypic diversity of Fragaria vesca and F. viridis in Lithuania. Biologija3(3), 19–22.

Määttä-Riihinen, K. R., Kamal-Eldin, A., and Törrönen, A. R. 2004. Identification and quantification of phenolic compounds in berries of Fragaria and Rubus species (family Rosaceae). J. Agric. Food Chem.52(20), 6178–6187.

Maheshgowda, B. M., Madaiah, D., Dinesh Kumar, M., Shivkumar, B. S., and Ganapathi, M. 2016. Performance of strawberry (Fragaria × ananassa Duch.) genotypes for yield, quality and biochemical traits under naturally ventilated polyhouse conditions. Int. J. Trop. Agric.34(5), 23–26.

Marjanovic-Balaban, D., Grujic, S., Jasic, M., and Vujadinovic, D. 2012. Testing of chemical composition of wild berries. In Third International Scientific Symposium Agrosym (Kovačević, D., ed.), pp. 154–161. Faculty of Agriculture, University of East Sarajevo, Jahorina, Bosnia and Herzegovina.

Mazur, S. P., Nes, A., Wold, A. B., Remberg, S. F., Martinsen, B. K., and Aaby, K. 2014. Effects of ripeness and cultivar on chemical composition of strawberry (Fragaria × ananassa Duch.) fruits and their suitability for jam production as a stable product at different storage temperatures. Food Chem.146, 412–422.

Meos, A., Zaharova, I., Kask, M., and Raal, A. 2017. Content of ascorbic acid in common cowslip (Primula veris L.) compared to common food plants and orange juices. Acta Biol. Crac. Ser. Bot.59(1), 113–120.

Mikulic-Petkovsek, M., Schmitzer, V., Slatnar, A., Stampar, F., and Veberic, R. 2012. Composition of sugars, organic acids, and total phenolics in 25 wild or cultivated berry species. J. Food Sci.77(10), 1064–1070.

Milivojević, J., Maksimović, V., Nikolić, M., Bogdanović, J., Maletić, R., and Milatović, D. 2011. Chemical and antioxidant properties of cultivated and wild Fragaria and Rubus berries. J. Food Qual.34(1), 1–9.

Najda, A., Dyduch-Siemińska, M., Dyduch, J., and Gantner, M. 2014. Comparative analysis of secondary metabolites contents in Fragaria vesca L. fruits. Ann. Agric. Environ. Med.21(2), 339–343.

Nielsen, S. S. (ed.). 2017. Food Science Text Series: Food Analysis. 5th edition. Springer International Publishing.

Oomah, B. D. and Mazza, G. 1998. Functional Foods: Biochemical and Processing Aspects. Technomic Publishing, Lancaster, PA.

Pacicco, L., Bodesmo, M., Torricelli, R., and Negri, V. 2018. A methodological approach to identify agro-biodiversity hotspots for priority in situ conservation of plant genetic resources. PLoS ONE13(6), 1–20.

Pieroni, A., Sõukand, R., Quave, C. L., Hajdari, A., and Mustafa, B. 2017. Traditional food uses of wild plants among the Gorani of South Kosovo. Appetite, 108, 83–92.

Polli Horticultural Research Centre. 2014-2015. Geneetilise ressursi maasika sordikollektsiooni vaatlusandmed Polli Aiandusuuringute Keskuses [Evaluations of Genetic Resources of Strawberry Cultivars’ Collection in Polli Horticultural Research Centre]. Written data protocol of strawberry cultivars’ collection. Polli, Estonia (in Estonian).

Publications Office of the European Union. 2013. Regulation (Eu) No 1305/2013 of The European Parliament and of The Council of 17 December 2013 on Support for Rural Development by the European Agricultural Fund for Rural Development (EAFRD) and Repealing Council Regulation (EC) No 1698/2005. 2013. Available at (accessed 30 September 2019).

Raal, A., Nisuma, K., and Meos, A. 2018. Pinus sylvestris L. and other conifers as natural sources of ascorbic acid. J. Pharm. Pharmacogn. Res.6(2), 89–95.

Rätsep, R., Moor, U., Vool, E., and Karp, K. 2015. Effect of post-harvest flame-defoliation on strawberry (Fragaria × ananassa Duch.) growth and fruit biochemical composition. Zemdirbyste102(4), 403–410.

Remberg, S. F., Soønsteby, A., Aaby, K., and Heide, O. M. 2010. Influence of postflowering temperature on fruit size and chemical composition of Glen Ample raspberry (Rubus idaeus L.). J. Agric. Food Chem.58(16), 9120–9128.

Sõukand, R. and Kalle, R. Where does the border lie: locally grown plants used for making tea for recreation and/or healing, 1970s–1990s Estonia. J. Ethnopharmacol., 2013, 150(1), 162–174.

Wagner, C. S., De Gezelle, J., Robertson, M., Robertson, K., Wilson, M., and Komarnytsky, S. 2017. Antibacterial activity of medicinal plants from The Physicians of Myddvai, a 13th century Welsh medical manuscript. J. Ethnopharmacol.203(5), 171–181.

Wrolstad, R. E., Acree, T. E., Decker, E. A., Penner, M. H., Reid, D. S., Schwartz, S. J., et al. (eds). 2005. Handbook of Food Analytical Chemistry: Pigments, Colorants, Flavors, Texture, and Bioactive Food Components. John Wiley & Sons, Inc., New Jersey.

Xie, Z., Fan, J., Charlebois, D., Roussel, D., Dubé, C., Charles, M. T., and Khanizadeh, S. 2014. Agronomic characteristics and phytochemical profiles of advanced June-bearing strawberry lines for the northern Canadian climate. Agric. Food Sci.23(1), 38–47.

Zeliou, K., Papasotiropoulos, V., Manoussopoulos, Y., and Lamari, F. N. 2018. Physical and chemical quality characteristics and antioxidant properties of strawberry cultivars (Fragaria × ananassa Duch.) in Greece: assessment of their sensory impact. J. Sci. Food Agric.98(11), 4065–4073.


Back to Issue