The circular economy is emerging as green technology solution for polymer and composite industries. However, the use of circular economy as an industrial practice is still a global challenge. In this article, polypropylene-cotton hybrid composite was developed using different amounts of cotton fibre waste (0, 10, 30, 40 wt%). Scanning electron microscope (SEM), tribometer, Rockwell hardness tester and binocular microscope were used for investigations of composite surface, hardness and coefficient of friction (COF). The mean coefficient of friction values was 0.64, 0.75, 0.88 and 0.94 for pure propylene, 10, 30 and 40% of cotton reinforced composites, respectively. The scanning electron microscopy characterization of hybrid composite revealed the voids, porosity and asperities due to random fibres orientation. The Rockwell hardness value of composites was increased due to rise of fibre fraction. Based on the COF values, hardness and surface characterization, polypropylene-cotton reinforced hybrid composite could be used functionally for thermal and sound applications.
1. Hussain, A., Kamboj, N., Podgurski, V., Antonov, M. and Goliandin, D. Circular economy approach to recycling technologies of postconsumer textile waste in Estonia: a review. Proc. Estonian Acad. Sci., 2021, 70(1), 82–92.
https://doi.org/10.3176/proc.2021.1.07
2. Mahdi, E. and Dean, A. The effect of filler content on the tensile behavior of polypropylene/cotton fiber and poly (vinyl chloride)/cotton fiber composites. Materials, 2020, 13(3), 753.
https://doi.org/10.3390/ma13030753
3. Jayaraman, K. Manufacturing sisal-polypropylene composites with minimum fibre degradation. Compos. Sci. Technol., 2003, 63(3–4), 367–374.
https://doi.org/10.1016/S0266-3538(02)00217-8
4. Satapathy, S., Nando, G. B., Jose, J. and Nag, A. Mechanical properties and fracture behavior of short PET fiber-waste polyethylene composites. J. Reinf. Plast. Compos., 2008, 27(9), 967–984.
https://doi.org/10.1177/0731684407086626
5. Anuar, N. I. S., Zakaria, S., Gan, S., Chia, C. H., Wang, C. and Harun, J. Comparison of the morphological and mechanical properties of oil palm EFB fibres and kenaf fibres in nonwoven reinforced composites. Ind. Crops Prod., 2019, 127, 55–65.
https://doi.org/10.1016/j.indcrop.2018.09.056
6. Saghrouni, Z., Baillis, D. and Jemni, A. Composites based on Juncus maritimus fibers for building insulation. Cem. Concr. Compos., 2020, 106, 103474.
https://doi.org/10.1016/j.cemconcomp.2019.103474
7. El-Tayeb, N. S. M. Abrasive wear performance of untreated SCF reinforced polymer composite. J. Mater. Process. Technol., 2008, 206(1), 305–314.
https://doi.org/10.1016/j.jmatprotec.2007.12.028
8. El-Sayed, A. A., El-Sherbiny, M. G., Abo-El-Ezz, A. S. and Aggag, G. A. Friction and wear properties of polymeric composite materials for bearing applications. Wear, 1995, 184(1), 45–53.
https://doi.org/10.1016/0043-1648(94)06546-2
9. Yousif, B. F. and El-Tayeb, N. S. M. Mechanical and wear properties of oil palm and glass fibres reinforced polyester composites. Int. J. Precis. Technol., 2009, 1(2), 213–222.
https://doi.org/10.1504/IJPTECH.2009.026380
10. Thilagavathi, G., Karan, C. P. and Thenmozhi, R. Development and investigations of kapok fiber based needle punched nonwoven as eco-friendly oil sorbent. J. Nat. Fibers, 2018, 17(1), 18–27.
https://doi.org/10.1080/15440478.2018.1458686
11. Jayaraman, K. Manufacturing sisal-polypropylene composites with minimum fibre degradation. Compos. Sci. Technol., 2003, 63(3–4), 367–374.
https://doi.org/10.1016/S0266-3538(02)00217-8
12. Antonov, M., Kers, J., Liibert, L., Shuliak, V., Smirnov, A. and Bartolomé, J. F. Effect of basalt reinforcement type and content on the abrasive wear behaviour of polymer composites. Key Eng. Mater., 2016, 674, 181–188.
https://doi.org/10.4028/www.scientific.net/KEM.674.181
13. Chand, N., Dwivedi, U. K. and Acharya, S. K. Anisotropic abrasive wear behaviour of bamboo (Dentrocalamus strictus). Wear, 2007, 262(9–10), 1031–1037.
https://doi.org/10.1016/j.wear.2006.10.006
14. Subramonian, S., Ali, A., Amran, M., Sivakumar, L. D., Salleh, S. and Rajaizam, A. Effect of fiber loading on the mechanical properties of bagasse fiber-reinforced polypropylene composites. Adv. Mech. Eng., 2016, 8(8), 1687814016664258.
https://doi.org/10.1177/1687814016664258
15. Singh Gill, N. and Yousif, B. F. Wear and frictional performance of betelnut fibre-reinforced polyester composite. P. I. Mech. Eng. J.-J. Eng., 2009, 223(2), 183–194.
https://doi.org/10.1243/13506501JET516
16. Yousif, B. F. Frictional and wear performance of polyester composites based on coir fibres. P. I. Mech. Eng. J.-J. Eng., 2009, 223(1), 51–59.
https://doi.org/10.1243/13506501JET455
17. Harsha, A. P. and Tewari, U. S. Tribological studies on glass fiber reinforced polyetherketone composites. J. Reinf. Plast. Compos., 2004, 23(1), 65–82.
https://doi.org/10.1177/0731684404029349
18. Hussain, A., Podgursky, V., Antonov, M., Abbas, M. M. and Awan, M. R. Tungsten carbide material tribology and circular economy relationship in polymer and composites industries. Proc. Inst. Mech. Eng. L., 2022, 236(4), 1–8.
https://doi.org/10.1177/14644207221096929
19. Hussain, A., Podgursky, V., Goljandin, D., Viljus, M., Antonov, M., Bogatov A. and Krasnou, I. Tribological and mechanical properties investigations of post-consumer cotton textiles. Solid State Phenom., 2021, 320, 97–102.
https://doi.org/10.4028/www.scientific.net/ssp.320.97
20. Hussain, A., Podgursky, V., Goljandin, D. and Antonov, M. TiAlN coatings tribology for textile machinery parts. Proc. Estonian Acad. Sci., 2021, 70(2), 163–171.
https://doi.org/10.3176/proc.2021.2.04