ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Bacterial spore’s fluorescence dependence on vaporised hydrogen peroxide concentration; pp. 117–126
PDF | 10.3176/proc.2022.2.02

Authors
Ott Rebane, Marco Kirm, Larisa Poryvkina, Harri Hakkarainen, Sergey Babichenko
Abstract

Commonly used biological indicators for assessing the efficiency of decontamination procedures include the spores of Bacillus atrophaeus (BA) and Geobacillus stearothermophilus (GS). BA and GS spores emit tryptophan-like fluorescence around 320 nm when excited by 280 nm UV light. This fluorescence signal is highly dependent on vaporised hydrogen peroxide (VHP) concentration around the spores, since VHP quenches the fluorescence. In this study we investigated the precise influence of VHP concentration on the autofluorescence properties of BA and GS spores. For both types of spores, the fluorescence signal intensity was found to fall faster and to a relatively lower level when higher VHP concentration was applied. The shape of the signal fall-off as a function of time was found to be well approximated by biexponential decay functions with similar time-constants for BA and GS spores, finally resulting in the equilibrium (or plateau/residual) fluorescence intensity levels that were very different for these samples. The reasons for the fluorescence signal fall-off were investigated by spectral fluorescence signatures (SFS) of the spores. The SFS measurements of the spores during VHP decontamination revealed that the spectral maximum of tryptophan-like (Trp-like) fluorescence changes towards a smaller Stokes shift and has the intensity fall-off due to quenching and oxidation under VHP influence.

References

1. Otter, J. A., Yezli, S., Barbut, F. and Perl, T. M. An overview of automated room disinfection systems: When to use them and how to choose them. In Decontamination in Hospitals and Healthcare (Walker, J., ed.). Second edition. Woodhead Publishing, 2020, 323–369. 
https://doi.org/10.1016/B978-0-08-102565-9.00015-7

2. Rebane, O., Hakkarainen, H., Kirm, M., Poryvkina, L., Sobolev, I., Wilska, P. and Babichenko, S. Real-time monitoring of hydrogen peroxide vapour decontamination of bacterial spores by means of UV fluorimetry. Proc. Estonian Acad. Sci., 2021, 70(1), 51–61. 
https://doi.org/10.3176/proc.2021.1.06

3. Colbert, E. M., Gibbs, S. G., Schmid, K. K., High, R., Lowe, J. J., Chaika, O. and Smith, P. W. Evaluation of adenosine triphosphate (ATP) bioluminescence assay to confirm surface disinfection of biological indicators with vaporised hydrogen peroxide (VHP). Healthcare Infect., 2015, 20(1), 16–22. 
https://doi.org/10.1071/HI14022

4. Hirakawa, K. Biomolecules oxidation by hydrogen peroxide and singlet oxygen. In Reactive Oxygen Species (ROS) in Living Cells (Filip, C. and Albu, E., eds). IntechOpen, 2017. 
https://doi.org/10.5772/intechopen.71465

5. Linley, E., Denyer, S. P., McDonnell, G., Simons, C. and Maillard, J.-Y. Use of hydrogen peroxide as a bio­cide: new consideration of its mechanisms of biocidal action. J. Antimicrob. Chemother., 2012, 67(7), 1589–1596. 
https://doi.org/10.1093/jac/dks129

6. Finnegan, M., Linley, E., Denyer, S. P., McDonnell, G., Simons, C. and Maillard, J.-Y. Mode of action of hydrogen peroxide and other oxidizing agents: differences between liquid and gas forms. J. Antimicrob. Chemother., 2010, 65(10), 2108–2115. 
https://doi.org/10.1093/jac/dkq308

7. Wood, J. P. and Adrion, A. C. Review of decontamination techniques for the inactivation of Bacillus anthracis and other spore-forming bacteria associated with building or outdoor materials. Environ. Sci. Technol., 2019, 53(8), 4045–4062. 
https://doi.org/10.1021/acs.est.8b05274

8. Luftman, H. S. and Regits, M. A.  B. atrophaeus and G. stearothermophilus biological indicators for chlorine dioxide gas decontamination. Appl. Biosaf., 2008, 13(3), 143–157. 
https://doi.org/10.1177%2F153567600801300304

9. Holmdahl, T., Lanbeck, P., Wullt, M. and Walder, M. H. A head-to-head comparison of hydrogen peroxide vapor and aerosol room decontamination systems. Infect. Control Hosp. Epidemiol., 2011, 32(9), 831–836. 
https://doi.org/10.1086/661104

10. Tikhonova, T. N., Rovnyagina, N. R., Zherebker, A. Y., Sluchanko, N. N., Rubekina, A. A., Orekhov, A. S. et al.  Dissection of the deep-blue autofluorescence changes accompanying amyloid fibrillation. Arch. Biochem. Biophys., 2018, 651, 13–20. 
https://doi.org/10.1016/j.abb.2018.05.019

11. Semenov, A. N., Yakimov, B. P., Rubekina, A. A., Gorin, D. A., Drachev, V. P., Zarubin, M. P. et al. The oxidation-induced autofluorescence hypothesis: red edge excitation and implications for metabolic imaging. Molecules, 2020, 25(8), 1863. 
https://doi.org/10.3390/molecules25081863   

12. McKenney, P., Driks, A. and Eichenberger, P. The Bacillus subtilis endospore: assembly and functions of the multi­layered coat. Nat. Rev. Microbiol., 2013, 11(1)33–44. 
https://doi.org/10.1038/nrmicro2921

13. Cortezzo, D. E., Koziol-Dube, K., Setlow, B. and Setlow, P. Treatment with oxidizing agents damages the inner membrane of spores of Bacillus subtilis and sensitizes spores to subsequent stress. J. Appl. Microbiol., 2004, 97(4), 838–852. 
https://doi.org/10.1111/j.1365-2672.2004.02370.x

14. Li, R., Dhankhar, D., Chen, J., Cesario, T. C. and Rentzepis, P. M. A tryptophan synchronous and normal fluorescence study on bacteria inactivation mechanism. Proc. Natl. Acad. Sci. U. S. A., 2019, 116(38), 18822–18826. 
https://doi.org/10.1073/pnas.1909722116

15. Munoz, L., Sadaie, Y. and Doi, R. H. Spore coat protein of Bacillus subtilis. Structure and precursor synthesis. J. Biol. Chem., 1978, 253(19), 6694–6701. 
https://pubmed.ncbi.nlm.nih.gov/99446/

16. Goldman, R. C. and Tipper, D. J. Bacillus subtilis spore coats: complexity and purification of a unique polypeptide component. J. Bacteriol., 1978, 135(3), 1091–1106. 
https://jb.asm.org/content/135/3/1091

17. Bhattacharyya, P. and Bose, S. K. Amino acid composition of cell wall and spore coat of Bacillus subtilis in relation to mycobacillin production. J. Bacteriol., 1967, 94(6), 2079–2080. 
https://jb.asm.org/content/94/6/2079

18. Zhdanova, N. G., Shirshin, E. A., Maksimov, E .G., Panchishin, I. M., Saletsky, A. M. and Fadeev, V. V. Tyrosine fluorescence probing of the surfactant-induced con­formational changes of albumin. Photochem. Photobiol. Sci., 2015, 14(5), 897–908. 
http://dx.doi.org/10.1039/C4PP00432A

19. Ghisaidoobe, A. B. T. and Chung, S. J. Intrinsic tryptophan fluorescence in the detection and analysis of proteins: A focus on Förster resonance energy transfer techniques. Int. J. Mol. Sci., 2014, 15(12), 22518–22538. 
https://dx.doi.org/10.3390%2Fijms151222518

20. Lakowicz, J. R. Principles of Fluorescence Spectroscopy. 3rd edition. Springer, Boston, MA, 2006. 
https://link.springer.com/book/10.1007/978-0-387-46312-4

21. Vivian, J. T. and Callis, P. R. Mechanisms of tryptophan fluorescence shifts in proteins. Biophys. J., 2001, 80(5), 2093–2109. 
https://doi.org/10.1016/S0006-3495(01)76183-8

Back to Issue