ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Buckling analysis of angle-ply multilayered and sandwich plates using the enhanced Refined Zigzag Theory; pp. 84–102
PDF | 10.3176/proc.2022.1.08

Authors
Matteo Sorrenti, Marco Gherlone, Marco Di Sciuva
Abstract

The recent enhancement of the standard Refined Zigzag Theory (RZT), herein named the enhanced Refined Zigzag Theory (en-RZT), has extended the range of applicability of the RZT to angle-ply multilayered and sandwich plates. The aim of the present investigation is to assess the numerical performances of the en-RZT for the buckling analysis of angle-ply multilayered and sandwich rectangular plates under in-plane normal loads. The linearized stability equations are obtained using the Ritz method in conjunction with the principle of virtual work, by means of Gram–Schmidt orthogonal polynomials. In order to assess the accuracy of the en-RZT, buckling loads of angle-ply laminated and sandwich plates are evaluated and compared with the numerical results available in open literature. The numerical investigation highlights the high accuracy of the en-RZT in predicting buckling loads. The study contains a parametric analysis aimed to investigate the influence of various design parameters, such as plate aspect ratio, thickness, lamina orientations, in-plane load combinations and boundary conditions on the buckling loads.

References

1. Pagano, N. J. Exact solutions for composite laminates in cylindrical bending. J. Compos. Mater., 1969, 3(3), 398–411. 
https://doi.org/10.1177/002199836900300304

2. Pagano, N. J. Exact solutions for rectangular bidirectional composites and sandwich plates. J. Compos. Mater., 1970, 4(1), 20–34. 
https://doi.org/10.1177/002199837000400102

3. Srinivas, S. and Rao, A. K. Bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates. Int. J. Solids Struct., 1970, 6(11), 1463–1481. 
https://doi.org/10.1016/0020-7683(70)90076-4

4. Srinivas, S. and Rao, A. K. A three-dimensional solution for plates and laminates. J. Franklin Inst., 1971, 291(6), 469–481. 
https://doi.org/10.1016/0016-0032(71)90004-4

5. Noor, A. K. Stability of multilayered composite plates. Fibre Sci. Technol., 1975, 8(2), 81–89. 
https://doi.org/10.1016/0015-0568(75)90005-6

6. Noor, A. K. and Burton, W. S. Three-dimensional solutions for antisymmetrically laminated anisotropic plates. J. Appl. Mech., 1990, 57(1), 182–188. 
https://doi.org/10.1115/1.2888300

7. Noor, A. K. and Burton, W. S. Assessment of computational models for multilayered anisotropic plates. Compos. Struct., 1990, 14(3), 233–265. 
https://doi.org/10.1016/0263-8223(90)90050-O

8. Savoia, M. and Reddy, J. N. A variational approach to three-dimensional elasticity solutions of laminated composite plates. J. Appl. Mech., 1992, 59(2S), S166–S175. 
https://doi.org/10.1115/1.2899483

9. Abrate, S. and Di Sciuva, M. Equivalent single layer theories for composite and sandwich structures: A review. Compos. Struct., 2017, 179, 482–494. 
https://doi.org/10.1016/j.compstruct.2017.07.090

10. Abrate, S. and Di Sciuva, M. Multilayer models for composite and sandwich structures. In Comprehensive Composite Materials II (Beaumont, P. W. R. and Zweben, C. H., eds). Elsevier, 2018, 399–425. 
https://doi.org/10.1016/B978-0-12-803581-8.09885-4

11. Jones, R. M., Morgan, H. S. and Whitney, J. M. Buckling and vibration of antisymmetrically laminated angle-ply rectangular plates. J. Appl. Mech., 1973, 40(4), 1143–1144. 
https://doi.org/10.1115/1.3423154

12. Sharma, S., Iyengar, N. G. R. and Murthy, P. N. Buckling of antisymmetric cross- and angle-ply laminated plates. Int. J. Mech. Sci., 1980, 22(10), 607–620. 
https://doi.org/10.1016/0020-7403(80)90077-6

13. Khdeir, A. A. Comparison between shear deformable and Kirchhoff theories for bending, buckling and vibration of antisymmetric angle-ply laminated plates. Compos. Struct., 1989, 13(3), 159–172. 
https://doi.org/10.1016/0263-8223(89)90001-9

14. Kabir, H. R. H. Analysis of a simply supported plate with symmetric angle-ply laminations. Comput. Struct., 1994, 51(3), 299–307. 
https://doi.org/10.1016/0045-7949(94)90337-9

15. Putcha, N. S. and Reddy, J. N. Stability and natural vibration analysis of laminated plates by using a mixed element based on a refined plate theory. J. Sound Vib., 1986, 104(2), 285–300. 
https://doi.org/10.1016/0022-460X(86)90269-5

16. Ni, Q.-Q., Xie, J. and Iwamoto, M. Shear buckling analysis of angle-ply laminates with higher-order shear deformation and pb-2 Ritz functions. Sci. Eng. Compos. Mater., 2004, 11(2–3), 123–136. 
https://doi.org/10.1515/SECM.2004.11.2-3.123

17. Reddy, J. N. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. Second Edition. CRC Press, 2003. 
https://doi.org/10.1201/b12409

18. D’Ottavio, M. and Carrera, E. Variable-kinematics approach for linearized buckling analysis of laminated plates and shells. AIAA J., 2010, 48(9), 1987–1996. 
https://doi.org/10.2514/1.J050203

19. Alesadi, A., Galehdari, M. and Shojaee, S. Free vibration and buckling analysis of composite laminated plates using layerwise models based on isogeometric approach and Carrera unified formulation. Mech. Adv. Mater. Struct., 2018, 25(12), 1018–1032. 
https://doi.org/10.1080/15376494.2017.1342883

20. Di Sciuva, M. Geometrically nonlinear theory of multilayered plates with interlayer slips. AIAA J., 1997, 35(11), 1753–1759. 
https://doi.org/10.2514/2.23

21. Tessler, A., Di Sciuva, M. and Gherlone, M. Refinement of Timoshenko Beam Theory for Composite and Sandwich Beams Using Zigzag Kinematics. NASA Report. NASA/TP-2007-215086, 2007. 

22. Tessler, A., Di Sciuva, M. and Gherlone, M. Refined Zigzag Theory for Laminated Composite and Sandwich Plates. NASA Report. NASA/TP-2009-215561, 2009. 
https://doi.org/10.1177/0021998308097730

23. Versino, D., Gherlone, M. and Di Sciuva, M. Four-node shell element for doubly curved multilayered composites based on the Refined Zigzag Theory. Compos. Struct., 2014, 118(1), 392–402. 
https://doi.org/10.1016/j.compstruct.2014.08.018

24. Iurlaro, L., Gherlone, M., Di Sciuva, M. and Tessler, A. Assessment of the Refined Zigzag Theory for bending, vibration, and buckling of sandwich plates: A comparative study of different theories. Compos. Struct., 2013, 106, 777–792.
https://doi.org/10.1016/j.compstruct.2013.07.019

25. Treviso, A., Mundo, D. and Tournour, M. A C0-continuous RZT beam element for the damped response of laminated structures. Compos. Struct., 2015, 131, 987–994. 
https://doi.org/10.1016/j.compstruct.2015.06.049

26. Iurlaro, L., Gherlone, M., Mattone, M. and Di Sciuva, M. Experimental assessment of the Refined Zigzag Theory for the static bending analysis of sandwich beams. J. Sandw. Struct. Mater., 2018, 20(1), 86–105. 
https://doi.org/10.1177/1099636216650614

27. Ascione, A., Orifici, A. C. and Gherlone, M. Experimental and numerical investigation of the Refined Zigzag Theory for accurate buckling analysis of highly heterogeneous sandwich beams. Int. J. Struct. Stab. Dyn., 2020, 20(07), 2050078. 
https://doi.org/10.1142/S0219455420500789

28. Oñate, E., Eijo, A. and Oller, S. Simple and accurate two-noded beam element for composite laminated beams using a refined zigzag theory. Comput. Methods Appl. Mech. Eng., 2012, 213–216, 362–382. 
https://doi.org/10.1016/j.cma.2011.11.023

29. Di Sciuva, M., Gherlone, M., Iurlaro, L. and Tessler, A. A class of higher-order C0 composite and sandwich beam elements based on the Refined Zigzag Theory. Compos. Struct., 2015, 132, 784–803. 
https://doi.org/10.1016/j.compstruct.2015.06.071

30. Versino, D., Gherlone, M., Mattone, M. C., Di Sciuva, M. and Tessler, A. C0 triangular elements based on the Refined Zigzag Theory for multilayered composite and sandwich plates. Compos. B. Eng., 2013, 44(1), 218–230. 
https://doi.org/10.1016/j.compositesb.2012.05.026

31. Gherlone, M., Versino, D. and Zarra, V. Multilayered triangular and quadrilateral flat shell elements based on the Refined Zigzag Theory. Compos. Struct., 2019, 233, 111629. 
https://doi.org/10.1016/j.compstruct.2019.111629

32. Di Sciuva, M. and Sorrenti, M. A family of C0 quadrilateral plate elements based on the Refined Zigzag Theory for the analysis of thin and thick laminated composite and sandwich plates. J. Compos. Sci., 2019, 3(4), 100. 
https://doi.org/10.3390/jcs3040100

33. Sorrenti, M., Di Sciuva, M. and Tessler, A. A robust four-node quadrilateral element for laminated composite and sandwich plates based on Refined Zigzag Theory. Comput. Struct., 2021, 242, 106369. 
https://doi.org/10.1016/j.compstruc.2020.106369

34. Kreja, I. and Sabik, A. Equivalent single-layer models in deformation analysis of laminated multilayered plates. Acta Mech., 2019, 230(7), 2827–2851. 
https://doi.org/10.1007/s00707-019-02434-7

35. Whitney, J. M. The effect of transverse shear deformation on the bending of laminated plates. J. Compos. Mater., 1969, 3(3), 534–547. 
https://doi.org/10.1177/002199836900300316

36. Loredo, A. Transverse shear warping functions for anisotropic multilayered plates. Class. Phys., arXiv:1211.0781. 

37. Weaver, P. M. Designing composite structures: lay-up selection. Proc. Inst. Mech. Eng.  G, 2002, 216(2), 105–116. 
https://doi.org/10.1243/095441002760179807

38. Adali, S., Richter, A. and Verijenko, V. E. Minimum weight design of symmetric angle-ply laminates under multiple uncertain loads. Struct. Optim., 1995, 9(2), 89–95. 
https://doi.org/10.1007/BF01758825

39. Venkateshappa, S. C., Jayadevappa, S. Y. and Puttiah, P. K. W. Experimental and finite element studies on buckling of skew plates under uniaxial compression. Sci. Eng. ComposMater., 2015, 22(3), 287–296. 
https://doi.org/10.1515/secm-2013-0153

40. Zhen, W. and Wanji, C. Buckling analysis of angle-ply composite and sandwich plates by combination of geometric stiffness matrix. Comput. Mech., 2007, 39(6), 839–848. 
https://doi.org/10.1007/s00466-006-0073-6

41. Xiaohui, R. and Zhen, W. Buckling of soft-core sandwich plates with angle-ply face sheets by means of a C0 finite element formulation. Arch. Appl. Mech., 2014, 84(8), 1173–1188. 
https://doi.org/10.1007/s00419-014-0876-4

42. Sorrenti, M. and Di Sciuva, M. An enhancement of the warping shear functions of Refined Zigzag Theory. J. Appl. Mech., 2021, 88(8), 084501. 
https://doi.org/10.1115/1.4050908

43. Jones, R. M. Mechanics of Composite Materials. Taylor & Francis, 1999. 

44. Leissa, A. W. Conditions for laminated plates to remain flat under inplane loading. Compos. Struct., 1986, 6(4), 261–270. 
https://doi.org/10.1016/0263-8223(86)90022-X

45. Whitney, J. M. Structural Analysis of Laminated Anisotropic Plates. CRC Press, Lancaster, PA, 1987. 

46. Loughlan, J. The influence of mechanical couplings on the compressive stability of anti-symmetric angle-ply laminates. Compos. Struct., 2002, 57(1), 473–482. 
https://doi.org/10.1016/S0263-8223(02)00116-2

47. Di Sciuva, M. and Sorrenti, M. Bending and free vibration analysis of functionally graded sandwich plates: An assessment of the Refined Zigzag Theory. J. Sandw. Struct. Mater., 2019, 23(3), 760–802. 
https://doi.org/10.1177/1099636219843970

48. Matsunaga, H. Vibration and stability of angle-ply laminated composite plates subjected to in-plane stresses. Int. J. Mech. Sci., 2001, 43(8), 1925–1944. 
https://doi.org/10.1016/S0020-7403(01)00002-9
 

Back to Issue