ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Gershgorin disk theorem in complex interval matrices; pp. 65–76
PDF | 10.3176/proc.2022.1.06

Authors
Suman Maiti, Snehashish Chakraverty
Abstract

In this article, the Gershgorin disk theorem in complex interval matrices is proposed for enclosing interval eigenvalues. This is a non-iterative method for finding eigenvalue bounds for both real and imaginary parts. Moreover, we are able to find gaps between the clusters of interval eigenvalues and have compared the results with the previous theorems for interval eigenvalue bounds for complex interval matrices. These results can be decisive for checking Hurwitz and Schur stability of complex interval matrices that appear in uncertain dynamical systems. Further bounds obtained from the present formulae can be considered as the initial bounds for iterative methods.

References

1. Hertz, D. The extreme eigenvalues and stability of real symmetric interval matrices. IEEE Trans. Autom. Control, 1992, 37(4), 532–535.
https://doi.org/10.1109/9.126593

2. Rohn, J. Stability of interval matrices: the real eigenvalue case. IEEE Trans. Autom. Control, 1992, 37(10), 1604–1605.
https://doi.org/10.1109/9.256393

3. Ahn, H.-S., Chen, Y. Q. and Podlubny, I. Robust stability test of a class of linear time-invariant interval fractional-order system using Lyapunov inequality. Appl. Math. Comput., 2007, 187(1), 27–34.
https://doi.org/10.1016/j.amc.2006.08.099

4. Leng, H. and He, Z. Computing eigenvalue bounds of structures with uncertain-but-non-random parameters by a method based on perturbation theory. Commun. Numer. Methods Eng., 2007, 23(11), 973–982. 
https://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.936
https://doi.org/10.1002/cnm.936

5. Leng, H., He, Z. and Yuan, Q. Computing bounds to real eigenvalues of real-interval matrices. Int. J. Numer. Methods Eng., 2008, 74(4), 523–530. 
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2179
https://doi.org/10.1002/nme.2179

6. Deif, A. The interval eigenvalue problem. ZAMM (J. Appl. Math. Mech.), 1991, 71(1), 61–64. 
https://onlinelibrary.wiley.com/doi/abs/10.1002/zamm.19910710117
https://doi.org/10.1002/zamm.19910710117

7. Rohn, J. A Handbook of Results on Interval Linear Problems. Czech Academy of Sciences, Prague, 2005.

8. Hladík, M., Daney, D. and Tsigaridas, E. Bounds on real eigenvalues and singular values of interval matrices. SIAM J. Matrix Anal. Appl., 2010, 31(4), 2116–2129. 
https://doi.org/10.1137/090753991

9. Rohn, J. Bounds on eigenvalues of interval matrices. ZAMM (J. Appl. Math. Mech.), 1998, 78(S3), 1049–1050. 
https://onlinelibrary.wiley.com/doi/abs/10.1002/zamm.19980781593 
https://doi.org/10.1002/zamm.19980781593

10. Bauer, F. L. and Fike, C. T. Norms and exclusion theorems. Numer. Math., 1960, 2, 137–141. 
https://doi.org/10.1007/BF01386217

11. Chu, K.-w. E. Generalization of the Bauer–Fike theorem. Numer. Math., 1986, 49, 685–691. 
https://doi.org/10.1007/BF01389736

12. Hladík, M., Daney, D. and Tsigaridas, E. A filtering method for the interval eigenvalue problem. Appl. Math. Comput., 2011, 217(12), 5236–5242. 
http://www.sciencedirect.com/science/article/pii/S0096300310010702
https://doi.org/10.1016/j.amc.2010.09.066

13. Mayer, G. A unified approach to enclosure methods for eigenpairs. ZAMM (J. Appl. Math. Mech.), 1994, 74(2), 115–128.
https://doi.org/10.1002/zamm.19940740215

14. Hertz, D. Interval analysis: eigenvalue bounds of interval matrices. In Encyclopedia of Optimization (Floudas, C. and Pardalos, P., eds). Springer, Boston, MA, 2008. 
https://doi.org/10.1007/978-0-387-74759-0_295

15. Hladík, M. Bounds on eigenvalues of real and complex interval matrices. Appl. Math. Comput., 2013, 219(10), 5584–5591.
https://doi.org/10.1016/j.amc.2012.11.075

16. Matcovschi, M.-H. and Pastravanu, O. Novel estimations for the eigenvalue bounds of complex interval matrices. Appl. Math. Comput., 2014, 234, 645–666.
https://doi.org/10.1016/j.amc.2014.02.054

17. Roy, F. and Gupta, D. K. Sufficient regularity conditions for complex interval matrices and approximations of eigenvalues sets. Appl. Math. Comput., 2018, 317, 193–209.
https://doi.org/10.1016/j.amc.2017.08.056

18. Chakraverty, S., Sahoo, D. M. and Mahato, N. R. Concepts of Soft Computing: Fuzzy and ANN with Programming. Springer, Singapore, 2019.
https://doi.org/10.1007/978-981-13-7430-2

19. Horn, R. A. and Johnson, C. R. Matrix Analysis. Cambridge University Press, Cambridge, 1985.
https://doi.org/10.1017/CBO9780511810817

20. Meyer, C. Matrix Analysis and Applied Linear Algebra. Society for Industrial and Applied Mathematics, 2000. 
https://books.google.co.in/books?id=Brpp1Cvzs14C

21. Gershgorin, S. Über die Abgrenzung der Eigenwerte einer Matrix. Izv. Akad. Nauk SSSR, 1931, 7, 749–754.
 

Back to Issue