ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Quantification of cracks in beams on the Pasternak foundation using Haar wavelets and machine learning; pp. 16–29
PDF | 10.3176/proc.2022.1.02

Authors
Helle Hein, Ljubov Jaanuska
Abstract

The inverse problem of crack identification, localisation and severity quantification is addressed in this article. The open cracks are simulated numerically in a homogeneous Euler–Bernoulli beam. The beam rests on the Pasternak foundation. Under the assumption that the size of the crack is small compared to the height of the beam, it is shown that the problem can be solved in terms of crack-induced changes in the natural frequencies or mode shapes. Predictions of the crack characteristics (location and severity) are made by artificial neural networks or random forests. The dimensionless natural frequency parameters or the first mode shape transformed into the Haar wavelet coefficients are used at the inputs of the machine learning methods. The numerical examples indicate that the combined approach of the natural frequencies, Haar wavelets, and machine learning produces accurate predictions. The results presented in the article can help in understanding the behaviour of more complex structures under similar conditions and provide apparent influence on the design of beams.

References

1. Addison, P. S. The Illustrated Wavelet Transform Handbook. Institute of Physics Publishing, Bristol and Philadelphia, 2002.
https://doi.org/10.1887/0750306920

2. Ajayan, A. Higher mode natural frequencies of stepped beam using spectral finite elements. Master’s thesis. Rourkela National Institute of Technology, India, 2013.

3. Ansari, R., Gholami, R., Hosseini, K. and Sahmani, S. A sixth-order compact finite difference method for vibrational analysis of nanobeams embedded in an elastic medium based on nonlocal beam theory. Math. Comput. Model., 2011, 54(11), 2577–2586. 
http://www.sciencedirect.com/science/article/pii/S0895717711003712
https://doi.org/10.1016/j.mcm.2011.06.030

4. Aziz, I. and Amin, R. Numerical solution of a class of delay differential and delay partial differential equations via Haar wavelet.  Appl. Math. Model., 2016, 40(23–24), 10286–10299.
https://doi.org/10.1016/j.apm.2016.07.018

5. Aziz, I., Siraj-ul-Islam and Šarler, B. Wavelets collocation methods for the numerical solution of elliptic BV problems. Appl. Math. Model., 2013, 37(3), 676–694.
https://doi.org/10.1016/j.apm.2012.02.046

6. Cao, M., Ye, L., Zhou, L. M., Su, Z. and Bai, R. Sensitivity of fundamental mode shape and static deflection for damage identification in cantilever beams. Mech. Syst. Signal Process., 2011, 25(2), 630–643.
https://doi.org/10.1016/j.ymssp.2010.06.011

7. Celep, Z., Guler, K. and Demir, F. Response of a completely free beam on a tensionless Pasternak foundation subjected to dynamic load. Struct. Eng. Mech., 2011, 37(1), 61–77.
https://doi.org/10.12989/sem.2011.37.1.061

8. Chen, B., Lin, B., Zhao, X., Zhu, W., Yang, Y. and Li, Y. Closed-form solutions for forced vibrations of a cracked double-beam system interconnected by a viscoelastic layer resting on Winkler–Pasternak elastic foundation. Thin-Walled Struct., 2021, 163, 107688. 
https://www.sciencedirect.com/science/article/pii/S0263823121001725
https://doi.org/10.1016/j.tws.2021.107688

9. Dimarogonas, A. D., Paipetis, S. A. and Chondros, T. G. Analytical Methods in Rotor Dynamics. Springer Netherlands, 2013.
https://doi.org/10.1007/978-94-007-5905-3

10. Elishakoff, I. Some unexpected results in vibration of non-homogeneous beams on elastic foundation. Chaos Solit. Fractals, 2001, 12(12), 2177–2218. 
http://www.sciencedirect.com/science/article/pii/S0960077900001235
https://doi.org/10.1016/S0960-0779(00)00123-5

11. Feklistova, L. and Hein, H. Crack localization in Euler–Bernoulli beams. In Proceedings of the 2nd International Conference Optimization and Analysis of Structures, Tartu, Estonia, August 25–27, 2013 (Lellep, J. and Puman, E., eds). University of Tartu Press, 35–38.

12. Hadjileontiadis, L. J., Douka, E. and Trochidis, A. Fractal dimension analysis for crack identification in beam structures. Mech. Syst. Signal Process., 2005, 19(3), 659–674. 
www.sciencedirect.com/science/article/pii/S0888327004000330
https://doi.org/10.1016/j.ymssp.2004.03.005

13. Hakim, S. J. S., Razak, H. A. and Ravanfar, S. A. Fault diagnosis on beam-like structures from modal parameters using artificial neural networks. Measurement, 2015, 76, 45–61. 
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84941363651&doi=10.1016%2fj.measurement.2015.08.021&partnerID=40&md5=b663b27c3930d93d802a13721856bc9e

14. Hakim, S. J. S., Razak, H. A., Ravanfar, S. A. and Mohammadhassani, M. Structural damage detection using soft computing method. In Structural Health Monitoring, Vol. 5 (Wicks, A., ed.). Springer, Cham, 2014, 143–151. 
https://doi.org/10.1007/978-3-319-04570-2_16

15. Hein, H. and Feklistova, L. Free vibrations of non-uniform and axially functionally graded beams using Haar wavelets. Eng. Struct., 2011, 33(12), 3696–3701. 
http://www.sciencedirect.com/science/article/pii/S0141029611003208
https://doi.org/10.1016/j.engstruct.2011.08.006

16. Hein, H. and Jaanuska, L. Comparison of machine learning methods for crack localization. Acta et Comment. Univ. Tartu. de Math., 2019, 23(1), 125–142.
https://doi.org/10.12697/ACUTM.2019.23.13

17. Hsiao, C.-H. and Wang, W.-J. State analysis of time-varying singular nonlinear systems via Haar wavelets. Math. Comput. Simul., 1999, 51(1–2), 91–100. 
http://www.sciencedirect.com/science/article/pii/S037847549900107X
https://doi.org/10.1016/S0378-4754(99)00107-X

18. Jaanuska, L. and Hein, H. Crack identification in beams using Haar wavelets and machine learning methods. Int. J. Mech., 2016, 10, 281–287. 

19. Jayawardhana, M., Zhu, X., Liyanapathirana, R. and Gunawardana, U. Statistical damage sensitive feature for structural damage detection using AR model coefficients. Adv. Struct. Eng., 2015, 18(10), 1551–1562.
https://doi.org/10.1260/1369-4332.18.10.1551

20. Karnovsky, I. A. and Lebed, O. I. Formulas for Structural Dynamics. McGraw-Hill, New York, NY, 2001.

21. Konar, P. and Chattopadhyay, P. Bearing fault detection of induction motor using wavelet and Support Vector Machines (SVMs). Appl. Soft Comput., 2011, 11(6), 4203–4211. 
http://www.sciencedirect.com/science/article/pii/S1568494611001104
https://doi.org/10.1016/j.asoc.2011.03.014

22. Lepik, Ü. Numerical solution of differential equations using Haar wavelets. Math. Comput. Simul., 2005, 68(2), 127–143. 
http://www.sciencedirect.com/science/article/pii/S0378475404002757
https://doi.org/10.1016/j.matcom.2004.10.005

23. Lepik, Ü. and Hein, H. Haar Wavelets: With Applications. Springer International Publishing Switzerland, 2014.
https://doi.org/10.1007/978-3-319-04295-4

24. Li, J. and Hua, H. Spectral finite element analysis of elastically connected double-beam systems. Finite Elem. Anal. Des., 2007, 43(15), 1155–1168.
https://doi.org/10.1016/j.finel.2007.08.007

25. Mahmoud, M. A. and Kiefa, M. A. A. Neural network solution of the inverse vibration problem. NDT E Int., 1999, 32(2), 91–99. 
http://www.sciencedirect.com/science/article/pii/S0963869598000267
https://doi.org/10.1016/S0963-8695(98)00026-7

26. Majak, J., Pohlak, M., Karjust, K., Eerme, M., Kurnitski, J. and Shvartsman, B. S. New higher order Haar wavelet method: application to FMG structures. Compos. Struct., 2018, 201, 72–78.
https://doi.org/10.1016/j.compstruct.2018.06.013

27. Majak, J., Shvartsman, B. S., Kirs, M., Pohlak, M. and Herranen, H. Convergence theorem for the Haar wavelet based discretization method. Compos. Struct., 2015, 126, 227–232.
https://doi.org/10.1016/j.compstruct.2015.02.050

28. Matbuly, M. S., Ragb, O. and Nassar, M. Natural frequencies of a functionally graded cracked beam using the differential quadrature method. Appl. Math. Comput., 2009, 215, 2307–2316.
https://doi.org/10.1016/j.amc.2009.08.026

29. Misiti, M., Misiti, Y., Oppenheim, G. and Poggi, J.-M. Wavelet Toolbox User’s Guide. The MathWorks, Natick, MA, 1997.

30. Misiti, M., Misiti, Y., Oppenheim, G. and Poggi, J.-M. (eds). Wavelets and their Applications. Wiley, 2013.

31. Ndambi, J.-M., Vantomme, J. and Harri, K. Damage assessment in reinforced concrete beams using eigenfrequencies and mode shape derivatives. Eng. Struct., 2002, 24(4), 501–515.
https://doi.org/10.1016/S0141-0296(01)00117-1

32. Ostachowicz, W. and Güemes, J. A. New Trends in Structural Health Monitoring. Springer, Vienna, 2013.
https://doi.org/10.1007/978-3-7091-1390-5

33. Özdemir, Y. I. Development of a higher order finite element on a Winkler foundation. Finite Elem. Anal. Des., 2012, 48, 1400–1408.
https://doi.org/10.1016/j.finel.2011.08.010

34. Pervaiz, N. and Aziz, I. Haar wavelet approximation for the solution of cubic nonlinear Schrodinger equations. Phys. A: Stat. Mech. Appl., 2020, 545, 123738.
https://doi.org/10.1016/j.physa.2019.123738

35. Quek, S.-T., Wang, Q., Zhang, L. and Ang, K.-K. Sensitivity analysis of crack detection in beams by wavelet technique. Int. J. Mech. Sci., 2001, 43(12), 2899–2910. 
http://www.sciencedirect.com/science/article/pii/S0020740301000649
https://doi.org/10.1016/S0020-7403(01)00064-9

36. Rizos, P. F., Aspragathos, N. and Dimarogonas, A. Identification of crack location and magnitude in a cantilever beam from the vibration modes. J. Sound Vib., 1990, 138(3), 381–388. 
http://www.sciencedirect.com/science/article/pii/0022460X9090593O
https://doi.org/10.1016/0022-460X(90)90593-O

37. De Rosa, M. A. and Maurizi, M. J. Dynamic analysis of multistep piles on Pasternak soil subjected to axial tip forces. J. Sound Vib., 1999, 219(5), 771–783.
https://doi.org/10.1006/jsvi.1998.1826

38. Rucka, M. and Wilde, K. Application of continuous wavelet transform in vibration based damage detection method for beams and plates. J. Sound Vib., 2006, 297(3–5), 536–550. 
http://www.sciencedirect.com/science/article/pii/S0022460X06003336
https://doi.org/10.1016/j.jsv.2006.04.015

39. Rucka, M. and Wilde, K. Crack identification using wavelets on experimental static deflection profiles. Eng. Struct., 2006, 28(2), 279–288. 
http://www.sciencedirect.com/science/article/pii/S0141029605002956
https://doi.org/10.1016/j.engstruct.2005.07.009

40. Shifrin, E. I. and Ruotolo, R. Natural frequencies of a beam with an arbitrary number of cracks. J. Sound Vib., 1999, 222(3), 409–423.
https://doi.org/10.1006/jsvi.1998.2083

41. Silva, T., Maia, N., Roque, A. and Travassos, J. Identification of elastic support properties on a Bernoulli–Euler beam. In  Proceedings of the 27th International Modal Analysis Conference, Orlando, FL, USA, February 9–12, 2009. Society for Experimental Mechanics, 2009, 4, 1848–1860.

42. Skrinar, M. and Lutar, B. A three-node beam finite element for transversely cracked slender beams on Winklerʼs foundation. Comput. Mater. Sci., 2012, 64, 260–264.
https://doi.org/10.1016/j.commatsci.2012.05.027

43. Ubertini, F., Comanducci, G. and Cavalagli, N. Vibration-based structural health monitoring of a historic bell-tower using output-only measurements and multivariate statistical analysis. Struct. Health Monit., 2016, 15(4), 438–457.
https://doi.org/10.1177/1475921716643948

44. Wang, Y. Damage assessment in asymmetric buildings using vibration techniques. PhD thesis. Queensland University of Technology, Australia, 2018.

45. Worden, K., Staszewski, W. J. and Hensman, J. J. Natural computing for mechanical systems research: A tutorial overview. Mech. Syst. Signal Process., 2011, 25(1), 4–111. 
http://www.sciencedirect.com/science/article/pii/S0888327010002499
https://doi.org/10.1016/j.ymssp.2010.07.013

46. Wu, Z. S. and Adewuyi, A. P. Vibration-based structural health monitoring technique using statistical features for data stability assessment and damage localization. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, 2009, 729233.
https://doi.org/10.1117/12.817518

47. Yan, Y. J., Cheng, L., Wu, Z. Y. and Yam, L. Development in vibration-based structural damage detection technique. Mech. Syst. Signal Process., 2007, 21, 2198–2211.
https://doi.org/10.1016/j.ymssp.2006.10.002
 

Back to Issue