ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Molecularly imprinted polymers: a new approach to the preparation of functional materials; pp. 3–11
PDF | doi: 10.3176/proc.2009.1.01

Authors
Andres Öpik, Anna Menaker, Jekaterina Reut, Vitali Syritski
Abstract

Molecular imprinting is a method for creating specific cavities in synthetic polymer matrices with memory for the template molecules. To date molecularly imprinted polymers (MIPs) have obtained a strong position in materials science and technology, expanding significantly the list of functional materials. This article provides a short review of the molecular imprinting technique with special attention paid to electrosynthesized electrically conducting polymers (ECPs), polypyrrole and poly­ethylenedioxythiophene, as matrix materials for molecular imprinting. We describe two different ECP-based MIP systems: enantioselective thin films of overoxidized polypyrrole imprinted with L-aspartic acid and surface imprinted polyethylene­dioxythiophene for selective protein adsorption.

References

  1. Haupt, K. and Mosbach, K. Molecularly imprinted poly­mers and their use in biomimetic sensors. Chem. Rev., 2000, 100(7), 2495–2504.
doi:10.1021/cr990099w

  2. Piletsky, S. A. and Turner, A. P. F. Electrochemical sensors based on molecularly imprinted polymers. Electroanalysis, 2002, 14(5), 317–323.
doi:10.1002/1521-4109(200203)14:5<317::AID-ELAN317>3.3.CO;2-X

  3. Shi, H. Q., Tsai, W. B., Garrison, M. D., Ferrari, S., and Ratner, B. D. Template-imprinted nanostructured sur­faces for protein recognition. Nature, 1999, 398(6728), 593–597.
doi:10.1038/19267

  4. Fortina, P., Kricka, L. J., Surrey, S., and Grodzinski, P. Nanobiotechnology: the promise and reality of new approaches to molecular recognition. Trends Bio­technol., 2005, 23(4), 168–173.
doi:10.1016/j.tibtech.2005.02.007

  5. Mosbach, K. and Ramström, O. The emerging technique of molecular imprinting and its future impact on biotechnology. Nature Biotechnol., 1996, 14(2), 163–170.
doi:10.1038/nbt0296-163

  6. Wulff, G. Enzyme-like catalysis by molecularly imprinted polymers. Chem. Rev., 2002, 102(1), 1–27.
doi:10.1021/cr980039a

  7. Polyakov, M. V. Adsorption properties and structure of silica gel. Zh. Fiz. Khim., 1931, 2, 799–905 (in Russian).

  8. Dickey, F. H. Specific adsorption. J. Phys. Chem., 1955, 59(8), 695–707.
doi:10.1021/j150530a006

  9. Pauling, L. A theory of the structure and process of formation of antibodies. J. Am. Chem. Soc., 1940, 62(10), 2643–2657.
doi:10.1021/ja01867a018

10. Wulff, G. and Sarhan, A. The use of polymers with enzymeanalogous structures for the resolution of racemates. Angew. Chem. Int. Ed., 1972, 11, 341.

11. Arshady, R. and Mosbach, K. Synthesis of substrate-selective polymers by host–guest polymerization. Macromol. Chem. Phys.–Makromol. Chem., 1981, 182(2), 687–692. doi:10.1002/macp.1981.021820240

12. Ye, L. and Mosbach, K. Molecular imprinting: synthetic materials as substitutes for biological antibodies and receptors. Chem. Mater., 2008, 20(3), 859–868.
doi:10.1021/cm703190w

13. Wulff, G. Molecular imprinting in cross-linked materials with the aid of molecular templates – a way towards artificial antibodies. Angew. Chem. Int. Ed., 1995, 34(17), 1812–1832.
doi:10.1002/anie.199518121

14. Sellergren, B. Molecular imprinting by noncovalent inter­actions – tailor-made chiral stationary phases of high selectivity and sample load-capacity. Chirality, 1989, 1(1), 63–68.
doi:10.1002/chir.530010112

15. Mayes, A. G. and Whitcombe, M. J. Synthetic strategies for the generation of molecularly imprinted organic polymers. Adv. Drug Deliv. Rev., 2005, 57(12), 1742–1778.
doi:10.1016/j.addr.2005.07.011

16. Allender, C. J., Brain, K. R., and Heard, C. M. Molecu­larly imprinted polymers – preparation, biomedical applications and technical challenges. In Progress in Medicinal Chemistry (King, F. D. and Oxford, A. W., eds). Elsevier, 1999, 235–291.

17. Mayes, A. G. and Mosbach, K. Molecularly imprinted polymer beads: suspension polymerization using a liquid perfluorocarbon as the dispersing phase. Anal. Chem., 1996, 68(21), 3769–3774.
doi:10.1021/ac960363a

18. Flores, A., Cunliff, D., Whitcombe, M. J., and Vulf­son, E. N. Imprinted polymers prepared by aqueous suspension polymerization. J. Appl. Polymer Sci., 2000, 77(8), 1841–1850.
doi:10.1002/1097-4628(20000822)77:8<1841::AID-APP22>3.0.CO;2-P

19. Mathew-Krotz, J. and Shea, K. J. Imprinted polymer membranes for the selective transport of targeted neutral molecules. J. Am. Chem. Soc., 1996, 118(34), 8154–8155.
doi:10.1021/ja954066j

20. Jakoby, B., Ismail, G. M., Byfield, M. P., and Velle­koop, M. J. A novel molecularly imprinted thin film applied to a Love wave gas sensor. Sensor. Actuat.
A-Phys.
, 1999, 76(1–3), 93–97.

21. Kobayashi, T., Fukaya, T., Abe, M., and Fujii, N. Phase inversion molecular imprinting by using template copolymers for high substrate recognition. Langmuir, 2002, 18(7), 2866–2872.
doi:10.1021/la0106586

22. Nicholls, I. A. and Rosengren, J. P. Molecular imprinting of surfaces. Bioseparation, 2001, 10(6), 301–305.
doi:10.1023/A:1021541631063

23. Malitesta, C., Losito, I., and Zambonin, P. G. Molecularly imprinted electrosynthesized polymers: new materials for biomimetic sensors. Anal. Chem., 1999, 71(7), 1366–1370.
doi:10.1021/ac980674g

24. Spurlock, L. D., Jaramillo, A., Praserthdam, A., Lewis, J., and Brajter-Toth, A. Selectivity and sensitivity of ultrathin purine-templated overoxidized polypyrrole film electrodes. Anal. Chim. Acta, 1996, 336(1–3), 37–46.
doi:10.1016/S0003-2670(96)00361-3

25. Deore, B., Chen, Z. D., and Nagaoka, T. Overoxidized polypyrrole with dopant complementary cavities as a new molecularly imprinted polymer matrix. Anal. Sci., 1999, 15(9), 827–828.
doi:10.2116/analsci.15.827

26. Heeger, A. J. Semiconducting and metallic polymers: the fourth generation of polymeric materials. Synthetic Met., 2001, 125(1), 23–42.
doi:10.1016/S0379-6779(01)00509-4

27. MacDiarmid, A. G. Synthetic metals: a novel role for organic polymers. Synthetic Met., 2001, 125(1), 11–22.
doi:10.1016/S0379-6779(01)00508-2

28. Gofer, Y., Sarker, H., Killian, J. G., Poehler, T. O., and Searson, P. C. An all-polymer charge storage device. Appl. Phys. Lett., 1997, 71(11), 1582–1584.
doi:10.1063/1.120074

29. Dennler, G., Bereznev, S., Fichou, D., Holl, K., Ilic, D., Koeppe, R., Krebs, M., Labouret, A., Lungen­schmied, C., Marchenko, A., Meissner, D., Melli­kov, E., Meot, J., Meyer, A., Meyer, T., Neuge­bauer, H., Öpik, A., Sariciftci, N. S., Taillemite, S., and Wohrle, T. A self-rechargeable and flexible polymer solar battery. Solar Energy, 2007, 81(8), 947–957.
doi:10.1016/j.solener.2007.02.008

30. Smela, E. Conjugated polymer actuators. MRS Bull., 2008, 33(3), 197–204.

31. Adhikari, B. and Majumdar, S. Polymers in sensor applications. Prog. Polym. Sci., 2004, 29(7), 699–766.
doi:10.1016/j.progpolymsci.2004.03.002

32. Bobacka, J. Conducting polymer-based solid-state ion-selective electrodes. Electroanalysis, 2006, 18(1), 7–18.
doi:10.1002/elan.200503384

33. Cosnier, S. Recent advances in biological sensors based on electrogenerated polymers: a review. Anal. Lett., 2007, 40(7), 1260–1279.
doi:10.1080/00032710701326643

34. Wallace, G. and Spinks, G. Conducting polymers – bridg­ing the bionic interface. Soft Matter, 2007, 3(6), 665–671.
doi:10.1039/b618204f

35. Vernitskaya, T. V. and Efimov, O. N. Polypyrrole: a con­ducting polymer (synthesis, properties, and applica­tions). Usp. Khim., 1997, 66(5), 489–505 (in Russian).

36. Rodriguez, I., Scharifker, B. R., and Mostany, J. In situ FTIR study of redox and overoxidation processes in polypyrrole films. J. Electroanal. Chem., 2000, 491(1–2), 117–125.
doi:10.1016/S0022-0728(00)00194-7

37. Shiigi, H., Kijima, D., Ikenaga, Y., Hori, K., Fukazawa, S., and Nagaoka, T. Molecular recognition for bile acids using a molecularly imprinted overoxidized poly­pyrrole film. J. Electrochem. Soc., 2005, 152(8), H129–H134.
doi:10.1149/1.1946367

38. Chen, Z. D., Takei, Y., Deore, B. A., and Nagaoka, T. Enantioselective uptake of amino acid with over­oxidized polypyrrole colloid templated with L-lactate. Analyst, 2000, 125(12), 2249–2254.
doi:10.1039/b005745m

39. Shiigi, H., Okamura, K., Kijima, D., Hironaka, A., Deore, B., Sree, U., and Nagaoka, T. Fabrication process and characterization of a novel structural isomer sensor – molecularly imprinted overoxidized polypyrrole film. Electrochem. Solid State Lett., 2003, 6(1), H1–H3.
doi:10.1149/1.1524808

40. Ramanaviciene, A. and Ramanavicius, A. Molecularly imprinted polypyrrole-based synthetic receptor for direct detection of bovine leukemia virus glyco­proteins. Biosens. Bioelectron., 2004, 20(6), 1076–1082.
doi:10.1016/j.bios.2004.05.014

41. Ebarvia, B. S., Cabanilla, S., and Sevilla, F. Biomimetic properties and surface studies of a piezoelectric caffeine sensor based on electro synthesized poly­pyrrole. Talanta, 2005, 66(1), 145–152.
doi:10.1016/j.talanta.2004.10.009

42. Ramström, O. and Ansell, R. J. Molecular imprinting technology: challenges and prospects for the future. Chirality, 1998, 10(3), 195–209.
doi:10.1002/(SICI)1520-636X(1998)10:3<195::AID-CHIR1>3.0.CO;2-9

43. Maier, N. M., Franco, P., and Lindner, W. Separation of enantiomers: needs, challenges, perspectives. J. Chromatogr. A, 2001, 906(1–2), 3–33.
doi:10.1016/S0021-9673(00)00532-X

44. Deore, B., Chen, Z. D., and Nagaoka, T. Potential-induced enantioselective uptake of amino acid into molecularly imprinted overoxidized polypyrrole. Anal. Chem., 2000, 72(17), 3989–3994.
doi:10.1021/ac000156h

45. Syritski, V., Reut, J., Menaker, A., Gyurcsányi, R. E., and Öpik, A. Electrosynthesized molecularly imprinted polypyrrole films for enantioselective recognition of L-aspartic acid. Electrochim. Acta, 2008, 53(6), 2729–2736.
doi:10.1016/j.electacta.2007.10.032

46. Ohtani, S., Matsushima, Y., Kobayashi, Y., and Kishi, K. Evaluation of aspartic acid racemization ratios in the human femur for age estimation. J. Forensic Sci., 1998, 43(5), 949–953.

47. Syritski, V., Gyurcsányi, R. E., Öpik, A., and Tóth, K. Synthesis and characterization of inherently conduct­ing polymers by using scanning electrochemical micro­scopy and Electrochemical Quartz Crystal Micro­balance. Synthetic Met., 2005, 152(1–3), 133–136.
doi:10.1016/j.synthmet.2005.07.097

48. Syritski, V., Öpik, A., and Forsén, O. Ion transport inves­tigations of polypyrroles doped with different anions by EQCM and CER techniques. Electrochim. Acta, 2003, 48(10), 1409–1417.
doi:10.1016/S0013-4686(03)00018-5

49. Liang, H. J., Ling, T. R., Rick, J. F., and Chou, T. C. Molecularly imprinted electrochemical sensor able to enantroselectivly recognize D and L-tyrosine. Anal. Chim. Acta, 2005, 542(1), 83–89.
doi:10.1016/j.aca.2005.02.007

50. Bossi, A., Bonini, F., Turner, A. P. F., and Piletsky, S. A. Molecularly imprinted polymers for the recognition of proteins: the state of the art. Biosens. Bioelectron., 2007, 22(6), 1131–1137.
doi:10.1016/j.bios.2006.06.023

51. Pap, T. and Horvai, G. Binding assays with molecularly imprinted polymers – why do they work? J. Chromatogr. B–Anal. Technol. Biomed. Life Sci., 2004, 804(1), 167–172.

52. Ge, Y. and Turner, A. P. F. Too large to fit? Recent developments in macromolecular imprinting. Trends Biotechnol., 2008, 26(4), 218–224.
doi:10.1016/j.tibtech.2008.01.001

53. Bossi, A., Piletsky, S. A., Piletska, E. V., Righetti, P. G., and Turner, A. P. F. Surface-grafted molecularly imprinted polymers for protein recognition. Anal. Chem., 2001, 73(21), 5281–5286.
doi:10.1021/ac0006526

54. Yilmaz, E., Haupt, K., and Mosbach, K. The use of immobilized templates – a new approach in molecular imprinting. Angew. Chem. Int. Ed., 2000, 39(12), 2115–2118.
doi:10.1002/1521-3773(20000616)39:12<2115::AID-ANIE2115>3.0.CO;2-V

55. Titirici, M. M., Hall, A. J., and Sellergren, B. Hier­arch­ically imprinted stationary phases: mesoporous poly­mer beads containing surface-confined binding sites for adenine. Chem. Mater., 2002, 14(1), 21–23.
doi:10.1021/cm011207+

56. Titirici, M. M., Hall, A. J., and Sellergren, B. Hierarchical imprinting using crude solid phase peptide synthesis products as templates. Chem. Mater., 2003, 15(4), 822–824.
doi:10.1021/cm025770j

57. Li, Y., Yang, H. H., You, Q. H., Zhuang, Z. X., and Wang, X. R. Protein recognition via surface molecu­larly imprinted polymer nanowires. Anal. Chem., 2006, 78(1), 317–320.
doi:10.1021/ac050802i

58. Menaker, A., Syritski, V., Reut, J., Öpik, A., Horváth, V., and Gyurcsányi, R. E. Electrosynthesized surface imprinted conducting polymer microrods for selective protein recognition. Advanced Materials, 2009, provisionally accepted.

Back to Issue