Molecular imprinting is a method for creating specific cavities in synthetic polymer matrices with memory for the template molecules. To date molecularly imprinted polymers (MIPs) have obtained a strong position in materials science and technology, expanding significantly the list of functional materials. This article provides a short review of the molecular imprinting technique with special attention paid to electrosynthesized electrically conducting polymers (ECPs), polypyrrole and polyethylenedioxythiophene, as matrix materials for molecular imprinting. We describe two different ECP-based MIP systems: enantioselective thin films of overoxidized polypyrrole imprinted with L-aspartic acid and surface imprinted polyethylenedioxythiophene for selective protein adsorption.
1. Haupt, K. and Mosbach, K. Molecularly imprinted polymers and their use in biomimetic sensors. Chem. Rev., 2000, 100(7), 2495–2504.
doi:10.1021/cr990099w
2. Piletsky, S. A. and Turner, A. P. F. Electrochemical sensors based on molecularly imprinted polymers. Electroanalysis, 2002, 14(5), 317–323.
doi:10.1002/1521-4109(200203)14:5<317::AID-ELAN317>3.3.CO;2-X
3. Shi, H. Q., Tsai, W. B., Garrison, M. D., Ferrari, S., and Ratner, B. D. Template-imprinted nanostructured surfaces for protein recognition. Nature, 1999, 398(6728), 593–597.
doi:10.1038/19267
4. Fortina, P., Kricka, L. J., Surrey, S., and Grodzinski, P. Nanobiotechnology: the promise and reality of new approaches to molecular recognition. Trends Biotechnol., 2005, 23(4), 168–173.
doi:10.1016/j.tibtech.2005.02.007
5. Mosbach, K. and Ramström, O. The emerging technique of molecular imprinting and its future impact on biotechnology. Nature Biotechnol., 1996, 14(2), 163–170.
doi:10.1038/nbt0296-163
6. Wulff, G. Enzyme-like catalysis by molecularly imprinted polymers. Chem. Rev., 2002, 102(1), 1–27.
doi:10.1021/cr980039a
7. Polyakov, M. V. Adsorption properties and structure of silica gel. Zh. Fiz. Khim., 1931, 2, 799–905 (in Russian).
8. Dickey, F. H. Specific adsorption. J. Phys. Chem., 1955, 59(8), 695–707.
doi:10.1021/j150530a006
9. Pauling, L. A theory of the structure and process of formation of antibodies. J. Am. Chem. Soc., 1940, 62(10), 2643–2657.
doi:10.1021/ja01867a018
10. Wulff, G. and Sarhan, A. The use of polymers with enzymeanalogous structures for the resolution of racemates. Angew. Chem. Int. Ed., 1972, 11, 341.
11. Arshady, R. and Mosbach, K. Synthesis of substrate-selective polymers by host–guest polymerization. Macromol. Chem. Phys.–Makromol. Chem., 1981, 182(2), 687–692. doi:10.1002/macp.1981.021820240
12. Ye, L. and Mosbach, K. Molecular imprinting: synthetic materials as substitutes for biological antibodies and receptors. Chem. Mater., 2008, 20(3), 859–868.
doi:10.1021/cm703190w
13. Wulff, G. Molecular imprinting in cross-linked materials with the aid of molecular templates – a way towards artificial antibodies. Angew. Chem. Int. Ed., 1995, 34(17), 1812–1832.
doi:10.1002/anie.199518121
14. Sellergren, B. Molecular imprinting by noncovalent interactions – tailor-made chiral stationary phases of high selectivity and sample load-capacity. Chirality, 1989, 1(1), 63–68.
doi:10.1002/chir.530010112
15. Mayes, A. G. and Whitcombe, M. J. Synthetic strategies for the generation of molecularly imprinted organic polymers. Adv. Drug Deliv. Rev., 2005, 57(12), 1742–1778.
doi:10.1016/j.addr.2005.07.011
16. Allender, C. J., Brain, K. R., and Heard, C. M. Molecularly imprinted polymers – preparation, biomedical applications and technical challenges. In Progress in Medicinal Chemistry (King, F. D. and Oxford, A. W., eds). Elsevier, 1999, 235–291.
17. Mayes, A. G. and Mosbach, K. Molecularly imprinted polymer beads: suspension polymerization using a liquid perfluorocarbon as the dispersing phase. Anal. Chem., 1996, 68(21), 3769–3774.
doi:10.1021/ac960363a
18. Flores, A., Cunliff, D., Whitcombe, M. J., and Vulfson, E. N. Imprinted polymers prepared by aqueous suspension polymerization. J. Appl. Polymer Sci., 2000, 77(8), 1841–1850.
doi:10.1002/1097-4628(20000822)77:8<1841::AID-APP22>3.0.CO;2-P
19. Mathew-Krotz, J. and Shea, K. J. Imprinted polymer membranes for the selective transport of targeted neutral molecules. J. Am. Chem. Soc., 1996, 118(34), 8154–8155.
doi:10.1021/ja954066j
20. Jakoby, B., Ismail, G. M., Byfield, M. P., and Vellekoop, M. J. A novel molecularly imprinted thin film applied to a Love wave gas sensor. Sensor. Actuat.
A-Phys., 1999, 76(1–3), 93–97.
21. Kobayashi, T., Fukaya, T., Abe, M., and Fujii, N. Phase inversion molecular imprinting by using template copolymers for high substrate recognition. Langmuir, 2002, 18(7), 2866–2872.
doi:10.1021/la0106586
22. Nicholls, I. A. and Rosengren, J. P. Molecular imprinting of surfaces. Bioseparation, 2001, 10(6), 301–305.
doi:10.1023/A:1021541631063
23. Malitesta, C., Losito, I., and Zambonin, P. G. Molecularly imprinted electrosynthesized polymers: new materials for biomimetic sensors. Anal. Chem., 1999, 71(7), 1366–1370.
doi:10.1021/ac980674g
24. Spurlock, L. D., Jaramillo, A., Praserthdam, A., Lewis, J., and Brajter-Toth, A. Selectivity and sensitivity of ultrathin purine-templated overoxidized polypyrrole film electrodes. Anal. Chim. Acta, 1996, 336(1–3), 37–46.
doi:10.1016/S0003-2670(96)00361-3
25. Deore, B., Chen, Z. D., and Nagaoka, T. Overoxidized polypyrrole with dopant complementary cavities as a new molecularly imprinted polymer matrix. Anal. Sci., 1999, 15(9), 827–828.
doi:10.2116/analsci.15.827
26. Heeger, A. J. Semiconducting and metallic polymers: the fourth generation of polymeric materials. Synthetic Met., 2001, 125(1), 23–42.
doi:10.1016/S0379-6779(01)00509-4
27. MacDiarmid, A. G. Synthetic metals: a novel role for organic polymers. Synthetic Met., 2001, 125(1), 11–22.
doi:10.1016/S0379-6779(01)00508-2
28. Gofer, Y., Sarker, H., Killian, J. G., Poehler, T. O., and Searson, P. C. An all-polymer charge storage device. Appl. Phys. Lett., 1997, 71(11), 1582–1584.
doi:10.1063/1.120074
29. Dennler, G., Bereznev, S., Fichou, D., Holl, K., Ilic, D., Koeppe, R., Krebs, M., Labouret, A., Lungenschmied, C., Marchenko, A., Meissner, D., Mellikov, E., Meot, J., Meyer, A., Meyer, T., Neugebauer, H., Öpik, A., Sariciftci, N. S., Taillemite, S., and Wohrle, T. A self-rechargeable and flexible polymer solar battery. Solar Energy, 2007, 81(8), 947–957.
doi:10.1016/j.solener.2007.02.008
30. Smela, E. Conjugated polymer actuators. MRS Bull., 2008, 33(3), 197–204.
31. Adhikari, B. and Majumdar, S. Polymers in sensor applications. Prog. Polym. Sci., 2004, 29(7), 699–766.
doi:10.1016/j.progpolymsci.2004.03.002
32. Bobacka, J. Conducting polymer-based solid-state ion-selective electrodes. Electroanalysis, 2006, 18(1), 7–18.
doi:10.1002/elan.200503384
33. Cosnier, S. Recent advances in biological sensors based on electrogenerated polymers: a review. Anal. Lett., 2007, 40(7), 1260–1279.
doi:10.1080/00032710701326643
34. Wallace, G. and Spinks, G. Conducting polymers – bridging the bionic interface. Soft Matter, 2007, 3(6), 665–671.
doi:10.1039/b618204f
35. Vernitskaya, T. V. and Efimov, O. N. Polypyrrole: a conducting polymer (synthesis, properties, and applications). Usp. Khim., 1997, 66(5), 489–505 (in Russian).
36. Rodriguez, I., Scharifker, B. R., and Mostany, J. In situ FTIR study of redox and overoxidation processes in polypyrrole films. J. Electroanal. Chem., 2000, 491(1–2), 117–125.
doi:10.1016/S0022-0728(00)00194-7
37. Shiigi, H., Kijima, D., Ikenaga, Y., Hori, K., Fukazawa, S., and Nagaoka, T. Molecular recognition for bile acids using a molecularly imprinted overoxidized polypyrrole film. J. Electrochem. Soc., 2005, 152(8), H129–H134.
doi:10.1149/1.1946367
38. Chen, Z. D., Takei, Y., Deore, B. A., and Nagaoka, T. Enantioselective uptake of amino acid with overoxidized polypyrrole colloid templated with L-lactate. Analyst, 2000, 125(12), 2249–2254.
doi:10.1039/b005745m
39. Shiigi, H., Okamura, K., Kijima, D., Hironaka, A., Deore, B., Sree, U., and Nagaoka, T. Fabrication process and characterization of a novel structural isomer sensor – molecularly imprinted overoxidized polypyrrole film. Electrochem. Solid State Lett., 2003, 6(1), H1–H3.
doi:10.1149/1.1524808
40. Ramanaviciene, A. and Ramanavicius, A. Molecularly imprinted polypyrrole-based synthetic receptor for direct detection of bovine leukemia virus glycoproteins. Biosens. Bioelectron., 2004, 20(6), 1076–1082.
doi:10.1016/j.bios.2004.05.014
41. Ebarvia, B. S., Cabanilla, S., and Sevilla, F. Biomimetic properties and surface studies of a piezoelectric caffeine sensor based on electro synthesized polypyrrole. Talanta, 2005, 66(1), 145–152.
doi:10.1016/j.talanta.2004.10.009
42. Ramström, O. and Ansell, R. J. Molecular imprinting technology: challenges and prospects for the future. Chirality, 1998, 10(3), 195–209.
doi:10.1002/(SICI)1520-636X(1998)10:3<195::AID-CHIR1>3.0.CO;2-9
43. Maier, N. M., Franco, P., and Lindner, W. Separation of enantiomers: needs, challenges, perspectives. J. Chromatogr. A, 2001, 906(1–2), 3–33.
doi:10.1016/S0021-9673(00)00532-X
44. Deore, B., Chen, Z. D., and Nagaoka, T. Potential-induced enantioselective uptake of amino acid into molecularly imprinted overoxidized polypyrrole. Anal. Chem., 2000, 72(17), 3989–3994.
doi:10.1021/ac000156h
45. Syritski, V., Reut, J., Menaker, A., Gyurcsányi, R. E., and Öpik, A. Electrosynthesized molecularly imprinted polypyrrole films for enantioselective recognition of L-aspartic acid. Electrochim. Acta, 2008, 53(6), 2729–2736.
doi:10.1016/j.electacta.2007.10.032
46. Ohtani, S., Matsushima, Y., Kobayashi, Y., and Kishi, K. Evaluation of aspartic acid racemization ratios in the human femur for age estimation. J. Forensic Sci., 1998, 43(5), 949–953.
47. Syritski, V., Gyurcsányi, R. E., Öpik, A., and Tóth, K. Synthesis and characterization of inherently conducting polymers by using scanning electrochemical microscopy and Electrochemical Quartz Crystal Microbalance. Synthetic Met., 2005, 152(1–3), 133–136.
doi:10.1016/j.synthmet.2005.07.097
48. Syritski, V., Öpik, A., and Forsén, O. Ion transport investigations of polypyrroles doped with different anions by EQCM and CER techniques. Electrochim. Acta, 2003, 48(10), 1409–1417.
doi:10.1016/S0013-4686(03)00018-5
49. Liang, H. J., Ling, T. R., Rick, J. F., and Chou, T. C. Molecularly imprinted electrochemical sensor able to enantroselectivly recognize D and L-tyrosine. Anal. Chim. Acta, 2005, 542(1), 83–89.
doi:10.1016/j.aca.2005.02.007
50. Bossi, A., Bonini, F., Turner, A. P. F., and Piletsky, S. A. Molecularly imprinted polymers for the recognition of proteins: the state of the art. Biosens. Bioelectron., 2007, 22(6), 1131–1137.
doi:10.1016/j.bios.2006.06.023
51. Pap, T. and Horvai, G. Binding assays with molecularly imprinted polymers – why do they work? J. Chromatogr. B–Anal. Technol. Biomed. Life Sci., 2004, 804(1), 167–172.
52. Ge, Y. and Turner, A. P. F. Too large to fit? Recent developments in macromolecular imprinting. Trends Biotechnol., 2008, 26(4), 218–224.
doi:10.1016/j.tibtech.2008.01.001
53. Bossi, A., Piletsky, S. A., Piletska, E. V., Righetti, P. G., and Turner, A. P. F. Surface-grafted molecularly imprinted polymers for protein recognition. Anal. Chem., 2001, 73(21), 5281–5286.
doi:10.1021/ac0006526
54. Yilmaz, E., Haupt, K., and Mosbach, K. The use of immobilized templates – a new approach in molecular imprinting. Angew. Chem. Int. Ed., 2000, 39(12), 2115–2118.
doi:10.1002/1521-3773(20000616)39:12<2115::AID-ANIE2115>3.0.CO;2-V
55. Titirici, M. M., Hall, A. J., and Sellergren, B. Hierarchically imprinted stationary phases: mesoporous polymer beads containing surface-confined binding sites for adenine. Chem. Mater., 2002, 14(1), 21–23.
doi:10.1021/cm011207+
56. Titirici, M. M., Hall, A. J., and Sellergren, B. Hierarchical imprinting using crude solid phase peptide synthesis products as templates. Chem. Mater., 2003, 15(4), 822–824.
doi:10.1021/cm025770j
57. Li, Y., Yang, H. H., You, Q. H., Zhuang, Z. X., and Wang, X. R. Protein recognition via surface molecularly imprinted polymer nanowires. Anal. Chem., 2006, 78(1), 317–320.
doi:10.1021/ac050802i
58. Menaker, A., Syritski, V., Reut, J., Öpik, A., Horváth, V., and Gyurcsányi, R. E. Electrosynthesized surface imprinted conducting polymer microrods for selective protein recognition. Advanced Materials, 2009, provisionally accepted.