ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Molecular scale organized polyconjugated polymer–heteropolyacid composites; pp. 12–17
PDF | doi: 10.3176/proc.2009.1.02

Authors
Anatoly Kulak, Alexander Kokorin, Tamara Kulak, Dieter Meissner
Abstract

Hybrid organic–inorganic molecular-organized materials based on a conductive polymer – poly[2-metoxy-5-(3',7'-dimethyloctyloxy)-p-phenylenevinylene] (MDMO-PPV) – doped with Keggin-type heteropolyacids (polyoxometalates) were synthesized. It is shown that the rate of chemical interaction between MDMO-PPV and heteropolyacids correlates with the oxidative activity and acidity of the latter and leads to the formation of tertiary structures due to a strong electrostatic interaction of each 4–6 monomer units of the polymer with the heteropolyacid anion cluster. This interaction manifests itself in the appearance of an intensive EPR signal characteristic of the unpaired electron localized in the conjugated polymer matrix as well as in the changes in optical, photoelectrochemical, and photoluminescence properties of the composite films.

References

  1. Günes, S., Neugebauer, H., and Sariciftci, N. S. Conjugated polymer-based organic solar cells. Chem. Rev., 2007, 107, 1324–1338.
doi:10.1021/cr050149z

  2. Günes, S. and Sariciftci, N. S. Hybrid solar cells. Inorg. Chem. Acta, 2008, 361, 581–588.
doi:10.1016/j.ica.2007.06.042

  3. Kulak, A. I., Kokorin, A. I., Kulak, T. I., Poznyak, S. K., Meissner, D., Pergushev, V. I., and Sariciftci, N. S. Molecular scale organized poly(MDMO-p-phenylene vinylene)–heteropolyacids composites. Synth. Met., 2006, 156, 843–847.
doi:10.1016/j.synthmet.2006.05.001

  4. Kulak, A. I. Electrochemistry of Semiconductor Hetero­structures. Universitetskoe, Minsk, 1986 (in Russian).

  5. Gomez-Romero, P. Hybrid organic–inorganic materials. In search of synergic activity. Adv. Mater., 2001, 13, 163–174.
doi:10.1002/1521-4095(200102)13:3<163::AID-ADMA163>3.3.CO;2-L

  6. Arici, E., Sariciftci, N. S., and Meissner, D. Hybrid solar cells based on nanoparticles of CuInS2 in organic matrices. Adv. Funct. Mater., 2003, 13, 165–171.
doi:10.1002/adfm.200390024

  7. Günes, S., Fritz, K. P., Neugebauer, H., Sariciftci, N. S., Kumar, S., and Scholes, G. D. Hybrid solar cells using PbS nanoparticles. Sol. Energy Mater. Sol. Cells, 2007, 91, 420–423.
doi:10.1016/j.solmat.2006.10.016

  8. Van Hal, P. A., Wienk, M. M., Kroon, J. M., Verhees, W. J. H., Stooff, L. H., van Gennip, W. J. H., Jonkheijm, P., and Janssen, R. A. J. Photoinduced electron transfer and photovoltaic response of a MDMO-PPV : TiO2 bulk-heterojunction. Adv. Mater., 2003, 15, 118–121.
doi:10.1002/adma.200390022

  9. Kulak, A. I., Poznyak, S. K., Kokorin, A. I., and Kulak, T. I. Molecular-organized composite materials based on polyconjugated polymers and polyoxometalates. Sviridov Readings, Iss. 2. Minsk, 2005, 16–21 (in Russian).

10. Hiskia, A., Mylonas, A., and Papaconstantinou, E. Comparison of the photoredox properties of polyoxometalates and semiconducting particles. Chem. Soc. Rev., 2001, 30, 62–69.
doi:10.1039/a905675k

11. Sadakane, M. and Steckhan, E. Electrochemical properties of polyoxometalates as electrocatalysts. Chem. Rev., 1998, 98, 219–237.
doi:10.1021/cr960403a

12. Otake, M., Komiyama, Y., and Otaki, T. Electron spin resonance studies of the reduced molybdovanado­phosphoric heteropoly acids. J. Phys. Chem., 1973, 77, 2896–2903.
doi:10.1021/j100642a014

Back to Issue