ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Multi-layer cyber-physical control method for mobile robot safety systems; pp. 383–391
PDF | 10.3176/proc.2021.4.03

Authors
Heiko Pikner, Raivo Sell, Jüri Majak, Kristo Karjust
Abstract

Self-driving vehicles and mobile robots are used more and more in public transportation and industrial companies. Multiple experimental platforms, which can be operated in an urban or industrial environment, have been developed recently. The key development for robust and safe control of the robot’s operation relies on the low-level cyber-physical system (CPS). CPS is composed of a collection of tightly integrated computational (cyber) units that are communicating with the physical world. CPS integrates computation and communication aspects with control and monitoring techniques. In this paper, the scientific goals underscore the analysis of the existing state-of-the-art solutions to increase the security, safety, and reliability of the multiple experimental platforms. Extra attention is paid to risk evaluation.

References

1. Riives, J., Karjust, K., Küttner, R., Lemmik, R., Koov, K. and Lavin, J. Software development platform for integrated manufacturing engineering system. In Proceedings of the 8th International DAAAM Baltic Conference “Industrial Engineering”, Tallinn, Estonia, April 19–21, 2012. Tallinn University of Technology, 555–560.

2. Sell. R., Rassõlkin, A., Wang, R. and Otto, T. Integration of autonomous vehicles and Industry 4.0. Proc. Est. Acad. Sci., 2019, 68(4), 389–394.
https://doi.org/10.3176/proc.2019.4.07

3. Christophe, F., Sell, R., Bernard, A. and Coatanéa, E. OPAS: Ontology processing for assisted synthesis of conceptual design solutions. In Proceedings of the ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 249–260.
https://doi.org/10.1115/DETC2009-87776

4. Sell, R., Coatanéa, E. and Christophe, F. Important aspects of early design in mechatronic. In Proceedings of the 6th International Conference of DAAAM Baltic Industrial Engineering, Tallinn, Estonia, April 24–26, 2008. Tallinn University of Technology, 177–182.

5. Sell, R. and Petritsenko, A. Early design and simulation toolkit for mobile robot platforms. Int. J. Prod. Dev., 2013, 18(2), 168–192.
https://doi.org/10.1504/IJPD.2013.053499

6. Pikner, H. and Karjust, K. Multi-layer cyber-physical low-level control solution for mobile robots. IOP Conf. Ser.: Mater. Sci. Eng., 2021, 1140, 012048.
https://doi.org/10.1088/1757-899X/1140/1/012048

7. Snatkin, A., Eiskop, T., Karjust, K. and Majak, K.  Production monitoring system development and modifi­cation. Proc. Est. Acad. Sci., 2015, 64(4S), 567–580.
https://doi.org/10.3176/proc.2015.4S.04

8. Sawant, A., Lenina, S. and Joshi, D. CAN, FlexRay, MOST versus ethernet for vehicular networks. Int. J. Innov. Adv. Comput. Sci., 2018, 7(4), 336–339.

9. Pikner, H. Overview of cyber-physical control systems for self-driving vehicles. In Proceedings of the 19th International Symposium ‘Topical problems in the Field of Electrical and Power Engineering. Doctoral School of Energy and Geotechnology. III’, Tartu, Estonia, January 14–17, 2020. Tallinn University of Technology, 105–106. 

10. Arnold, E., Al-Jarrah, O. Y., Dianati, M., Fallah, S., Oxtoby, D. and Mouzakitis, A. A survey on 3D object detection methods for autonomous driving applications. IEEE Trans. Intell. Transp. Syst., 2019, 20(10), 3782–3795.
https://doi.org/10.1109/TITS.2019.2892405

11. Pikner, H., Sell, R., Karjust, K., Malayjerdi. E. and Velsker, T. Cyber-physical control system for autonomous logistic robot. In Proceedings of the 2021 IEEE 19th International Power Electronics and Motion Control Conference (PEMC), Gliwice, Poland, April 25–29, 2021, 699–704.
https://doi.org/10.1109/PEMC48073.2021.9432526

12. Hellmund, A., Wirges, S., Taş, Ö. Ş., Bandera, C. and Salschneider, N. O. Robot operating system: A modular software framework for automated driving. In Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil, November 1–4, 2016.IEEE, 1564–1570.
https://doi.org/10.1109/ITSC.2016.7795766

13. Sell, R. and Otto, T. Remotely controlled multi robot environment. In Proceedings of the 2008 19th EAEEIE Annual Conference, Tallinn, Estonia, June 29–July 2, 2008. IEEE, 20–25.
https://doi.org/10.1109/EAEEIE.2008.4610152

14. Rohrich, R. F., Teixeira, M. A. S., Piardi, L. and de Oliveira, A. S. A bio-inspired approach for robot swarm in smart factories. In Advances in Intelligent Systems and Computing. Springer, Cham, 2020, 1093, 303–314.
https://doi.org/10.1007/978-3-030-36150-1_25

15. Ziyan, C. and Shiguo, L. China’s self-driving car legislation study. Comput. Law Secur. Rev., 2021, 41, 105555.
https://doi.org/10.1016/j.clsr.2021.105555

16. Nilsson, D. K., Phung, P. H. and Larson, U. E. Vehicle ECU classification based on safety-security characteristics. In Proceedings of the IET Road Transport Information and Control Conference and the ITS United Kingdom Membersʼ Conference, Manchester, UK, May 20–22, 2008, 102.
https://doi.org/10.1049/ic.2008.0810

17. Chan, C.-Y. Trends in crash detection and occupant restraint technology. Proc. IEEE, 2007, 95(2), 388–396.
https://doi.org/10.1109/JPROC.2006.888391

18. Rassõlkin, A., Sell, R. and Leier, M. Development case study of the first estonian self-driving car, iseauto. Electr. Control Commun. Eng., 2018, 14(1), 81–88.
https://doi.org/10.2478/ecce-2018-0009

19. Raval, V. and Dentlinger, M. J. Risk landscape of auton­o­mous cars. EDPACS, 2017, 56(3), 1–18.
https://doi.org/10.1080/07366981.2017.1355099

20. Lima, A., Rocha, F., Völp, M. and Esteves-Veríssimo, P. Towards safe and secure autonomous and cooperative vehicle ecosystems. In Proceedings of the 2nd ACM Work­shop on Cyber-Physical Systems Security and Privacy – CPS-SPC, Vienna, Austria, October 28, 2016. ACM, 59–70.
https://doi.org/10.1145/2994487.2994489

21. Kaganski, S., Majak, J. and Karjust, K. Fuzzy AHP as a tool for prioritization of key performance indicators. Procedia CIRP, 2018, 72, 1227–1232.
https://doi.org/10.1016/j.procir.2018.03.097

22. Paavel, M., Karjust, K. and Majak, J. PLM maturity model development and implementation in SME. Procedia CIRP, 2017, 63, 651–657. 
https://doi.org/10.1016/j.procir.2017.03.144

23. Paavel, M., Karjust, K. and Majak, J. Development of a product lifecycle management model based on the fuzzy analytic hierarchy process. Proc. Est. Acad. Sci., 2017, 66(3), 279–286.
https://doi.org/10.3176/proc.2017.3.05

Back to Issue