This review paper deals with the operation of human joints which, from a mechanical point of view, can be regarded as bearings. The main problem in the studies of biobearings is separate consideration of the matter in different disciplines or areas of research. However, being a highly interdisciplinary field, biomechanics has to collect and apply knowledge from many branches of science. In this paper, the recent advances in tribology, organic chemistry, and tissue biology are reviewed and summarized to give a comprehensive vision of the state of the art in the performance of synovial joints. The emphasis is on the latest findings in lubrication mechanisms and their possible interactions.
2. Yao, J. Q., Laurent, M. P., Johnson, T. S., Blanchard, C. R., and Crowninshield, R. D. The influences of lubricant and material on polymer/CoCr sliding friction. Wear, 2003, 255, 780–784.
doi:10.1016/S0043-1648(03)00180-7
3. Graindorge, S., Ferrandez, W., Jin, Z., Ingham, E., Grant, C., Twigg, P., and Fisher, J. Biphasic surface amorphous layer lubrication of articular cartilage. Med. Eng. Phys., 2005, 27, 836–844.
doi:10.1016/j.medengphy.2005.05.001
4. Fisher, J. Biomedical applications. In Modern Tribology Handbook, Vol. 2. Materials, Coating and Industrial Applications (Bhushan, B., ed.). CRC Press, Boca Raton, 2001, 1593–1609.
5. Blewis, M. E., Nugent-Derfus, G. E., Schmidt, T. A., Schumacher, B. L., and Sah, R. L. A model of synovial fluid lubricant composition in normal and injured joints.Eur. Cells Mater., 2007, 13, 26–39.
6. Elsaid, K. A., Jay, G. D., Warman, M. L., Rhee, D. K., and Chichester, C. O. Association of articular cartilage degradation and loss of boundary-lubricating ability of synovial fluid following injury and inflammatory arthritis. Arthr. Rheum., 2005, 52,1746–1755.
doi:10.1002/art.21038
7. Jin, Z., Williams, S., Tipper, J., Ingham, E., and Fisher, J. Tribology of hip joints from natural hip joints, cartilage substitution, artificial replacements to cartilage tissue engineering. J. Biomech. Sci. Eng., 2006, 1, 59–79.
doi:10.1299/jbse.1.69
8. Peng, Z. Ostearthritis diagnosis using particle analysis technique. Wear, 2007, 262, 630–640.
doi:10.1016/j.wear.2006.07.011
9. Mow, V. C. and Ateshian, G. A. Lubrication and wear of diarthrodial joints. In Basic Orthopedic Biomechanics (Mow, V. C. and Hayes, W. C., eds). 2nd edn. Lippincott-Raven, Philadelphia, 1997, 275–315.
10. Mow, V. C. and Guo, X. E. Mechano-electrochemical properties of articular cartilage: their inhomogeneities and anisotropies. Annu. Rev. Biomed. Eng., 2002, 4, 175–209.
doi:10.1146/annurev.bioeng.4.110701.120309
11. Mansour, J. M. Biomechanics of cartilage. In Kinesiology: the Mechanics and Pathomechanics of Human Movement (Oatis, C. A., ed.). Lippincott Williams and Wilkins, Philadelphia, 2003, Ch. 5, 66–79.
12. Mow, V. C., Ateshian, G. A., and Spilker, R. L. Biomechanics of diarthrodial joints: a review of twenty years of progress. J. Biomech. Eng., 1993, 115, 460–467.
doi:10.1115/1.2895525
13. Mow, V. C., Ratcliffe, A., and Poole, A. R. Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials, 1992, 13, 67–97.
doi:10.1016/0142-9612(92)90001-5
14. Ateshian, G. A., Wang, H., and Lai, W. M. The role of interstitial fluid pressurization and surface porosities on the boundary friction of articular cartilage. J. Trib., 1998, 120, 241–251.
doi:10.1115/1.2834416
15. Krishnan, R., Kopacz, M., and Ateshian, G. A. Experimental verification of the role of interstitial fluid pressurization in cartilage lubrication. J. Orth. Res., 2004, 22, 565–570.
doi:10.1016/j.orthres.2003.07.002
16. Soltz, M. A. and Ateshian, G. A. A conewise linear elasticity mixture model for the analysis of tension–compression nonlinearity in articular cartilage. J. Biomech. Eng., 2000, 122, 576–586.
doi:10.1115/1.1324669
17. Neville, A., Morina, A., Liskiewicz, T., and Yan, Y. Synovial joint lubrication – does the nature teach more effective engineering lubrication strategies? Proc. Inst. Mech. Eng. [C]: J. Mech. Eng. Sci., 2007, 221, 1223–1230.
18. Sawae, Y. and Murakami, T. An experimental investigation of boundary lubrication mechanism with protein and lipid in synovial joint using total internal reflection fluorescence microscopy. J. Biomech., 2006, 39(1), 476–485.
doi:10.1016/S0021-9290(06)84941-9
19. Schwarz, I. M. and Hills, B. A. Surface-active phospholipid as the lubricating component of lubricin. Brit. J. Rheumatol., 1998, 37, 21–26.
doi:10.1093/rheumatology/37.1.21
20. Forsey, R. W., Fisher, J., Thompson, J., Stone, M. H., Bell, C., and Ingham, E. The effect of hyaluronic acid and phospholipid based lubricants on friction within a human cartilage damage model. Biomaterials, 2006, 27, 4581–4590.
doi:10.1016/j.biomaterials.2006.04.018
21. Wilson, W., van Donkelaar, C. C., van Rietbergen, R., and Huiskes, R. The role of computational models in the search for the mechanical behavior and damage mechanisms of articular cartilage. Med. Eng. Phys., 2005, 27(10), 810–826.
doi:10.1016/j.medengphy.2005.03.004
22. Kobayashi, S., Yonekubo, S., and Kurogouchi, Y. Cryoscanning electron microscopic study of the surface amorphous layer of articular cartilage. J. Anat., 1995, 187, 429–444.
23. Hills, B. A. and Crawford, R. W. Normal and prosthetic synovial joints are lubricated by surface-active phospholipid: a hypothesis. J. Arthroplasty, 2003, 18(4), 499–505.
doi:10.1016/S0883-5403(03)00072-X
24. den Otter, W. K. and Shkulipa, S. A. Intermonolayer friction and surface shear viscosity of lipid bilayer membranes. Biophys. J., 2007, 93, 423–433.
doi:10.1529/biophysj.107.105395
25. Gale, L. R., Chen, Y., Hills, B. A., and Crawford, R. Boundary lubrication of joints: characterization of surface-active phospholipids found on retrieved implants. Acta Orthop., 2007, 78(3), 309–314.
doi:10.1080/17453670710013852
26. Trunfio-Sfarghiu, A.-M., Berthier, Y., Meurisse, M.-H., and Rieu, J.-P. Multiscale analysis of the tribological role of the molecular assemblies of synovial fluid. Case of a healthy joint and implants. Trib. Int., 2007, 40, 1500–1515.
doi:10.1016/j.triboint.2007.02.008
27. Briscoe, W. H., Titmuss, S., Tiberg, F., Thomas, R. K., McGillivray, D. J., and Klein, J. Boundary lubrication under water. Nature, 2006, 444, 191–194.
doi:10.1038/nature05196
28. Raviv, U. and Klein, J. Fluidity of bound hydration layers. Science, 2002, 297, 1540–1543.
doi:10.1126/science.1074481
29. Zappone, B, Ruths, M, Greene, G. W., Jay, G. D, and Israelachvili, J. N. Adsorption, lubrication and wear of lubricin on model surfaces: polymer brush-like behavior of a glycoprotein. Biophys. J., 2007, 92, 1693–1708.
doi:10.1529/biophysj.106.088799
30. Rhee, D. K., Marcelino, J., Baker, M. A., Gong, Y., Smits, P., and Lefebvre, V. The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell overgrowth of synovial cell growth. J. Clin. Invest., 2005, 115(3), 622–631.
doi:10.1172/JCI200522263
31. Oates, K. M. N., Krause, K. E., Jones, R. L., and Colby, R. Rheopexy of synovial fluid and protein aggregation. J. R. Soc. Interface, 2003, 3, 167–174.
doi:10.1098/rsif.2005.0086
32. Pasquali-Ronchetti, I., Quaglino, D., Mori, G., Bacchelli, B., and Ghosh, P. Hyaluronan–phospholipid interactions. J. Struct. Biol., 1997, 120, 1–10.
doi:10.1006/jsbi.1997.3908