ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
The different tongues of q-calculus; pp. 81–99
PDF | doi: 10.3176/proc.2008.2.03

Author
Thomas Ernst
Abstract

In this review paper we summarize the various dialects of q-calculus: quantum calculus, time scales, and partitions. The close connection between Γq(x) functions on the one hand, and elliptic functions and theta functions on the other hand will be shown. The advantages of the Heine notation will be illustrated by the (q-)Euler reflection formula, q-Appell functions, Carlitz–AlSalam polynomials, and the so-called q-addition. We conclude with some short biographies about famous scientists in q-calculus.

References

1. Adıvar, M. and Bohner, M. Spectral analysis of q-difference equations with spectral singularities. Math. Comput. Modelling, 2006, 43, 695–703.
doi:10.1016/j.mcm.2005.04.014

2. Agarwal, R. P. Some basic hypergeometric identities. Ann. Soc. Sci. Bruxelles. Ser. I, 1953, 67, 186–202.

3. Al-Salam, W. A. Saalschützian theorems for basic double series. J. London Math. Soc., 1965, 40, 455–458.
doi:10.1112/jlms/s1-40.1.455

4. Al-Salam, W. A. and Carlitz, L. Some orthogonal q-polynomials. Math. Nachr., 1965, 30, 47–61.
doi:10.1002/mana.19650300105

5. Andrews, G. E. A simple proof of Jacobi’s triple product identity. Proc. Amer. Math. Soc., 1965, 16, 333–334.
doi:10.2307/2033875

6. Andrews, G. E. On basic hypergeometric series, mock theta functions, and partitions. I. Quart. J. Math. Oxford Ser. (2), 1966, 17, 64–80.

7. Andrews, G. E. Summations and transformations for basic Appell series. J. London Math. Soc. (2), 1972, 4, 618–622.

8. Andrews, G. E. On the q-analog of Kummer’s theorem and applications. Duke Math. J., 1973, 40, 525–528.
doi:10.1215/S0012-7094-73-04045-3

9. Andrews, G. E. and Askey, R. A simple proof of Ramanujan’s summation of the 1ψ1. Aequationes Math., 1978, 18, 333–337.

10. Appell, P. and Kampé de Fériet, J. Fonctions hypergéométriques et hypersphériques. Paris, 1926.

11. Ashton, C. H. Die Heineschen O-Funktionen und ihre Anwendungen auf die elliptischen Funktionen. C. Wolf & Sohn, München, 1909.

12. Atakishiyev, N. M. and Atakishiyeva, M. K. A q-analogue of the Euler gamma integral Theor. Math. Phys., 2001, 129, 1325–1334 (in Russian and English).
doi:10.1023/A:1012459209474

13. Bailey, W. N. Generalized Hypergeometric Series. Reprinted by Hafner, New York, 1972.

14. Bellacchi, G. Introduzione storica alla teoria delle Funzioni ellittiche. Firenze, 1894.

15. Brown, B. M. and Eastham, M. S. P. A note on the Dixon formula for a finite hypergeometric series. J. Comp. Appl. Math., 2006, 194, 173–175.
doi:10.1016/j.cam.2005.06.021

16. Burchnall, J. L. and Chaundy, T. W. Expansions of Appell’s double hypergeometric functions. Quart. J. Math., 1940, 11, 249–270.
doi:10.1093/qmath/os-11.1.249

17. Carlitz, L. A Saalschützian theorem for double series. J. London Math. Soc., 1963, 38, 415–418.
doi:10.1112/jlms/s1-38.1.415

18. Carlitz, L. Summation of a double hypergeometric series. Matematiche (Catania), 1967, 22, 138–142.

19. Carlitz, L. A transformation formula for multiple hypergeometric series. Monatsh. Math., 1967, 71, 1–6.
doi:10.1007/BF01299953

20. Cigler, J. Elementare q-Identitäten. Publ. I. R. M. A. Strasbourg, 1982, 182/S-04, 23–57.

21. Dattoli, G. and Torre, A. Symmetric q-Bessel functions. Matematiche (Catania), 1996, 51, 153–167 (1997).

22. Daum, J. A. Basic Hypergeometric Series. Thesis, Lincoln, Nebraska, 1941.

23. Désarménien, J. q-Analogues of the Hermite polynomials. (Les q-analogues des polynômes d’Hermite.) (French) Sémin. Lothar. Comb., 1982, 6, B06b, 12 pp. (electronic only).

24. De Sole, A. and Kac, V. On integral representations of q-gamma and q-beta functions. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 2005, 16, 11–29.

25. Ernst, T. A method for q-calculus. J. Nonlinear Math. Phys., 2003, 10, 487–525.
doi:10.2991/jnmp.2003.10.4.5

26. Ernst, T. Some results for q-functions of many variables. Rend. Padova, 2004, 112, 199–235.

27. Ernst, T. q-Bernoulli and q-Euler polynomials, an umbral approach. Int. J. Difference Equations, 2006, 1, 31–80.

28. Ernst, T. Die Jacobi–Gudermann–Glaisher elliptischen Funktionen nach Heine. U. U. D. M. Report, 2007, 45.

29. Ernst, T. Some new formulas involving Γq functions. Rend. Padova (to be published).

30. Exton, H. q-Hypergeometric Functions and Applications. Ellis Horwood, Chichester (West Sussex), 1983.

31. Fitouhi, A., Brahim, K. and Bettaibi, N. Asymptotic approximations in quantum calculus. J. Nonlinear Math. Phys., 2005, 12, 586–606.
doi:10.2991/jnmp.2005.12.4.11

32. Gasper, G. and Rahman, M. Basic Hypergeometric Series. Cambridge University Press, 1990.

33. Hahn, W. Über Orthogonalpolynome, die q-Differenzengleichungen genügen. Math. Nachr., 1949, 2, 4–34.
doi:10.1002/mana.19490020103

34. Halverson, T. Representations of the q-rook monoid. J. Algebra, 2004, 273, 227–251.
doi:10.1016/j.jalgebra.2003.11.002

35. Hardy, G. H. Ramanujan. Cambridge University Press, 1940 (reprinted by Chelsea, New York, 1978).

36. Heine, E. Über die Reihe 1 + [(1 – qα) (1 – qβ)] / [(1 – q) (1 – qγ)] x 

+ [(1 – qα) (1 – qα+1)  (1 – qβ) (1 – qβ+1)] / [(1 – q´ (1 – q2) (1 – qγ) (1 – qγ+1)] x2 +…

 J. Reine Angew. Math., 1846, 32, 210–212.

37. Heine, E. Untersuchungen über die Reihe 1 + [(1 – qα) (1 – qβ)] / [(1 – q) (1 – qγ)] x 

+ [(1 – qα) (1 – qα+1) (1 – qβ´ (1 – qβ+1)] / [(1 – q) (1 – q2) (1 – qγ) (1 – qγ+1)] x2 +…

 J. Reine Angew. Math., 1847, 34, 285–328.

38. Heine, E. Abriss einer Theorie der elliptischen Funktionen. J. Reine Angew. Math., 1850, 39, 122–137.

39. Heine, E. Handbuch der Theorie der Kugelfunktionen. Vol. 1. Berlin, 1878.

40. Hilger, S. Ein Masskettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. Univ. WÜrzburg, Diss. iv, Würzburg, 1988.

41. Jackson, F. H. On q-definite integrals. Quart. J. Pure Appl. Math., 1910, 41, 193–203.

42. Jackson, F. H. On basic double hypergeometric functions. Quart. J. Math., 1942, 13, 69–82.
doi:10.1093/qmath/os-13.1.69

43. Jackson, F. H. Basic double hypergeometric functions. Quart. J. Math., 1944, 15, 49–61.
doi:10.1093/qmath/os-15.1.49

44. Jacobi, C. G. J. Fundamenta nova theoriae functionum ellipticarum. Regiomonti. 1829.

45. Jones, G. and Singerman, D. Complex Functions: An Algebraic and Geometric Viewpoint. Cambridge University Press, 1987.

46. Kac, V. and Cheung, P. Quantum Calculus. Universitext. Springer-Verlag, New York, 2002.

47. Macdonald, I. G. Symmetric Functions and Hall Polynomials. Oxford University Press, 1995.

48. Nalli, P. Sopra un procedimento di calcolo analogo alla integrazione. Palermo Rend., 1923, 47, 337–374.

49. Reid, C. The Search for E. T. Bell. Mathematical Association of America, Washington, DC, 1993.

50. Santilli, R. M. Imbedding of Lie algebras in nonassociative structures. Nuovo Cimento A, 1967, 51, 570–576.
doi:10.1007/BF02902200

51. Slater, L. J. Generalized Hypergeometric Functions. Cambridge University Press, 1966.

52. Smith, E. R. Zur Theorie der Heineschen Reihe und ihrer Verallgemeinerung. Diss. Univ. München, 1911.

53. Srivastava, H. M. Some transformations and reduction formulas for multiple q-hypergeometric series. Ann. Mat. Pura Appl., 1986, 4, 49–56.
doi:10.1007/BF01760810

54. Thomae, J. Beiträge zur Theorie der Heineschen Reihe. J. Reine Angew. Math., 1869, 70, 258–281.

55. Thomae, J. Abriss einer Theorie der Functionen einer complexen Veränderlichen und der Thetafunctionen. Zweite vermehrte Auflage. Halle a. S. Nebert, 1873.

56. Vilenkin, N. J. and Klimyk, A. U. Representations of Lie Groups and Special Functions, Vol. 3. Kluwer Academic Publishers, 1992.

57. Ward, M. A calculus of sequences. Amer. J. Math., 1936, 58, 255–266.
doi:10.2307/2371035

58. Watson, G. N. A new proof of the Rogers–Ramanujan identities. J. London Math. Soc., 1929, 4, 4–9.
doi:10.1112/jlms/s1-4.13.4

59. Woronowicz, S. L. Compact matrix pseudogroups. Comm. Math. Phys., 1987, 111, 613–665.
doi:10.1007/BF01219077

 
Back to Issue