Sometimes yellow-tinted lenses are recommended to help improve visual quality. As yellow lenses filter blue light, it is believed that their use could decrease the intensity of scattered light in the eye (retinal straylight). However, the results of some studies have contradicted this assumption (Van Os et al. 2017). Currently various nontinted blue-light-blocking lenses are used to protect the eyes from short-wavelength light. The objective of this study was to determine whether blue-light-blocking lenses affect the levels of retinal straylight in the eye. A straylight meter (C-Quant, Oculus) was used for retinal straylight measurements. The measurements were performed under four different conditions: 1. without a spectacle lens in front of the eye, 2. with a plano lens without an antireflective (AR) coating, 3. with a lens with a blue-light-blocking coating, and 4. with a yellow-tinted lens without an AR coating. The study involved 37 subjects with a mean age of 22 ± 1.3 (SD) years. No significant differences in straylight parameters (s) (p > 0.05) were observed for measurements obtained without a lens in front of the eye (log[s] = 0.90 ± 0.02 [SE]), with the uncoated lens (log[s] = 0.92 ± 0.02) and with the lens with a blue-light-filtering coating (log[s] = 0.92 ± 0.02). Retinal straylight was significantly increased with the use of a yellow-tinted lens (log[s] = 0.96 ± 0.02) compared with no lens (p < 0.001). Neither yellow-tinted lenses nor nontinted blue-light-blocking lenses reduce the levels of retinal straylight in the eye.
Cerviño, A., Gonzalez-Meijome, J. M., Linhares, J. M. M., Hosking, S. L. and Montes-Mico, R. 2008a. Effect of sport-tinted contact lenses for contrast enhancement on retinal straylight measurements. Ophthalmic Physiol. Opt., 28(2), 151–156.
https://doi.org/10.1111/j.1475-1313.2008.00541.x
Cerviño, A., Montes-Mico, R. and Hosking, S. L. 2008b. Performance of the compensation comparison method for retinal straylight measurement: Effect of patient’s age on repeatability. Br. J. Ophthalmol., 92(6), 788–791.
https://doi.org/10.1136/bjo.2007.131078
Coppens, J. E., Franssen, L. and van den Berg, T. J. T. P. 2006a. Wavelength dependence of intraocular straylight. Exp. Eye Res., 82(4), 688–692.
https://doi.org/10.1016/j.exer.2005.09.007
Coppens, J. E., Franssen, L. and van den Berg, T. J. T. P. 2006b. Reliability of the compensation comparison method for measuring retinal stray light studied using Monte-Carlo simulations. J. Biom. Opt., 11(5), 054010.
https://doi.org/10.1117/1.2357731
De Wit, G. C. and Coppens, J. E. 2003. Stray light of spectacle lenses compared with stray light in the eye. Optom. Vis. Sci., 80(5), 395–400.
https://doi.org/10.1097/00006324200305000-00014
De Wit, G. C., Franssen, L., Coppens, J. E. and van den Berg, T. J. T. P. 2006. Simulating the straylight effects of cataracts. J. Cataract Refract. Surg., 32(2), 294–300.
https://doi.org/10.1016/j.jcrs.2006.01.048
Eperjesi, F. and Agelis, L. E. 2011. Effects of yellow filters on visual acuity, contrast sensitivity and reading under conditions of forward light scatter. Graefes Arch. Clin. Exp. Ophthalmol., 249(5), 709–714.
https://doi.org/10.1007/s00417-010-1488-5
Faul, F., Erdfelder, E., Lang, A.-G. and Buchner, A. 2007. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods, 39(2), 175–191.
https://doi.org/10.3758/bf03193146
Franssen, L., Coppens, J. E. and van den Berg, T. J. T. P. 2006. Compensation comparison method for assessment of retinal straylight. Investig. Ophthalmol. Vis. Sci., 47(2), 768–776.
https://doi.org/10.1167/iovs.05-0690
Franssen, L., Tabernero, J., Coppens, J. E. and van den Berg, T. J. T. P. 2007. Pupil size and retinal straylight in the normal eye. Investig. Ophthalmol. Vis. Sci., 48(5), 2375–2382.
https://doi.org/10.1167/iovs.06-0759
Giannos, S. A., Kraft, E. R., Lyons, L. J. and Gupta, P. K. 2019. Spectral evaluation of eyeglass blocking efficiency of ultraviolet/high-energy visible blue light for ocular protection. Optom. Vis. Sci., 96(7), 513–522.
https://doi.org/10.1097/OPX.0000000000001393
Ginis, H., Pérez, G. M., Bueno, J. M. and Artal, P. 2012. The wide-angle point spread function of the human eye reconstructed by a new optical method. J. Vis., 12(3), 1–10.
https://doi.org/10.1167/12.3.20
Ginis, H. S., Perez, G. M., Bueno, J. M., Pennos, A. and Artal, P. 2013. Wavelength dependence of the ocular straylight. Investig. Ophthalmol. Vis. Sci., 54(5), 3702–3708.
https://doi.org/10.1167/iovs.13-11697
Hammond, B. R., Bernstein, B. and Dong, J. 2009. The effect of the AcrySof natural lens on glare disability and photostress. Am. J. Ophthalmol., 148(2), 272–276.
https://doi.org/10.1016/j.ajo.2009.03.014
Lacherez, P., Saeri, A. K., Wood, J. M., Atchison, D. A. and Horswill, M. S. 2013. A yellow filter improves response times to low-contrast targets and traffic hazards. Optom. Vis. Sci., 90(3), 242–248.
https://doi.org/10.1097/OPX.0b013e3182815783
Lawrenson, J. G., Hull, C. C. and Downie, L. E. 2017. The effect of blue-light blocking spectacle lenses on visual performance, macular health and the sleep-wake cycle: a systematic review of the literature. Ophthalmic Physiol. Opt., 37(6), 644–654.
https://doi.org/10.1111/opo.12406
Lin, J. B., Gerratt, B. W., Bassi, C. J. and Apte, R. S. 2017. Short-wavelength light-blocking eyeglasses attenuate symptoms of eye fatigue. Investig. Ophthalmol. Vis. Sci., 58(1), 442–447.
https://doi.org/10.1167/iovs.16-20663
Mainster, M. A. and Turner, P. L. 2012. Glareʼs causes, consequences, and clinical challenges after a century of ophthalmic study. Am. J. Ophthalmol., 153(4), 587–593.
https://doi.org/10.1016/j.ajo.2012.01.008
Massof, R. W. 2019. Why donʼt yellow night vision glasses work? JAMA Ophthalmol., 137(10), 1154–1155.
https://doi.org/10.1001/jamaophthalmol.2019.2907
Rabin, J. and Wiley, R. 1996. Differences in apparent contrast in yellow and white light. Ophthalmic Physiol. Opt., 16(1), 68–72.
https://doi.org/10.1016/0275-5408(94)00009-3
Rozema, J. J., Van den Berg, T. J. T. P. and Tassignon, M. J. 2010. Retinal straylight as a function of age and ocular biometry in healthy eyes. Investig. Ophthalmol. Vis. Sci., 51(5), 2795–2799.
https://doi.org/10.1167/iovs.09-4056
Slica, S., Ikaunieks, G. and Rinkus, D. 2010. Effect of yellow filters on the vision. Latv. J. Phys. Tech. Sci., 47(3), 37–43.
https://doi.org/10.2478/v10047-010-0013-2
Van Den Berg, T. J. T. P. 1986. Importance of pathological intraocular light scatter for visual disability. Doc. Ophthalmol., 61, 327–333.
https://doi.org/10.1007/BF00142360
Van Den Berg, T. J. T. P., Van Rijn, L. J. R., Michael, R., Heine, C., Coeckelbergh, T., Nischler, C. et al. 2007. Straylight effects with aging and lens extraction. Am. J. Ophthalmol., 144(3), 358–363.
https://doi.org/10.1016/j.ajo.2007.05.037
Van den Berg, T. J. T. P., van Rijn, L. J. R., Kaper-Bongers, R., Vonhoff, D. J., Völker-Dieben, H. J., Grabner, G. et al. 2009. Disability glare in the aging eye. Assessment and impact on driving. J. Optom., 2(3), 112–118.
https://doi.org/10.3921/joptom.2009.112
Van der Meulen, I. J. E., Engelbrecht, L. A., van Vliet, J. M. J., Lapid-Gortzak, R., Nieuwendaal, C. P., Mourits, M. P. et al. 2010. Straylight measurements in contact lens wear. Cornea, 29(5), 516–522.
https://doi.org/10.1097/ICO.0b013e3181c11e29
Van Os, A., Stassen, M. J. C., Tassignon, M.-J. and Rozema, J. J. 2017. Influence of yellow filters on straylight measurements. J. Cataract Refract. Surg., 43(8), 1077–1080.
https://doi.org/10.1016/j.jcrs.2017.06.033
Vos J. J. 1984. Disability glare – a state of the art report. Commission International de l’Eclairage Journal, 3(2), 39–53.