ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Multivariate statistical analysis of heavy metals and physico-chemical parameters in the groundwater of Karak District, Khyber Pakhtunkhwa, Pakistan; pp. 297–306
PDF | 10.3176/proc.2021.3.08

Authors
Asif Khan, Muhammad Naeem, Ivar Zekker, Muhammad Balal Arian, Greg Michalski, Sayed Zeeshan, Hameed ul Haq, Muhammad Ikram, Abbas Khan, Fazle Subhan, Yahya Jani, Zane Vincevica-Gaile, Muhammad Zahoor, Idrees Khan, Muhammad Ishaq Ali Shah
Abstract

Groundwater heavy metal pollution is a major concern all around the world. For the assessment of heavy metals and physico-chemical characteristics, groundwater samples were collected from different locations of the Karak District, Pakistan. With the help of the global information system device (GIS), groundwater samples were collected and studied from 47 locations. The present study focused on the water table (WT), water source depth (WSD), pH, electrical conductivity (EC), dissolved oxygen (DO), total dissolved solids (TDS), lead (Pb(II)), silver (Ag(I)), iron (Fe(II)) and chromium (Cr(VI)) parameters. Heavy metals were analyzed by the Atomic Absorption Spectrophotometer (AAS). The Pearson’s matrix of correlation showed relationships between several parameters, such as the EC and the TDS which had close interactions between all the three different groundwater samples (collected by hand pump (HP), bore holes (BH) and tube wells (TW)). The strong correlation was detected in all the sources of water between the TDS and the EC, the regression coefficient (r) of which was 1. In the hierarchical clustering (by dendrograms) the HP samples show two clusters: Cluster 1 contains seven parameters and Cluster 2 has four parameters. The BH samples have two clusters: Cluster 1 contains three parameters and Cluster 2 has eight parameters. The TW dendrogram also shows two clusters: Cluster 1 contains six parameters while Cluster 2 has five parameters.

References

1. Shekhar, S. and Pandey, A. C. Delineation of groundwater potential zone in hard rock terrain of India using remote sensing, geographical information system (GIS) and analytic hierarchy process (AHP) techniques. Geocarto Int., 2015, 30(4), 402–421. 
https://doi.org/10.1080/10106049.2014.894584

2. Lee, S., Kim,Y.-S. and Oh, H.-J. Application of a weights-of-evidence method and GIS to regional groundwater productivity potential mapping. J. Env. Manag., 2012, 96(1), 91–105. 
https://doi.org/10.1016/j.jenvman.2011.09.016

3. Tahmassebipoor, N., Rahmati, O., Noormohamadi, F. and Lee, S. Spatial analysis of groundwater potential using weights-of-evidence and evidential belief function models and remote sensing. Arab. J. Geosci., 2016, 9, 79. 
https://doi.org/10.1007/s12517-015-2166-z

4. Ibrahim, A. K., Ahmed, S. H., Radeef, A. Y. and Hazzaa, M. M. Statistical analysis of groundwater quality parameters in selected sites at Kirkuk governorate/Iraq. IOP Conf. Ser.: Mater. Sci. Eng., 2021, 1058, 012028.
https://doi.org/10.1088/1757-899X/1058/1/012028

5. Simu, S., Uddin, M. J., Majumder, R. K., Zaman, M. N., Rahman, M. A. and Kashem, M. A.  Speciation analysis of elements of soil samples by XRF in Gazipur industrial area, Bangladesh. Int. J. Mod. Res. Eng. Technol., 2018, 3(3), 12‒23.

6. Belkhiri, L. and Mouni L. B. L. Multivariate statistical techniques for the evaluation of spatial variation in ground­water quality of Soummam basin (Algeria). Research Journal of Earth and Planetary Studies, 2011, 20, 7.

7. Helena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, J. M. and Fernandez, L. Temporal evolution of groundwater com­position in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Res., 2000, 34(3), 807–816. 
https://doi.org/10.1016/S0043-1354(99)00225-0

8. Brodnjak-Vončina, D., Dobčnik, D., Novič, M. and Zupan, J. Chemometrics characterisation of the quality of river water. Anal. Chim. Acta, 2002, 462(1), 87–100. 
https://doi.org/10.1016/S0003-2670(02)00298-2

9. Reghunath, R., Murthy, T. R. S. and Raghavan, B. R. The utility of multivariate statistical techniques in hydro­geochemical studies: an example from Karnataka, India. Water Res., 2002, 36(10), 2437–2442. 
https://doi.org/10.1016/S0043-1354(01)00490-0

10. Simeonov, V., Stratis, J. A., Samara, C., Zachariadis, G., Voutsa, D., Anthemidis, A., Sofoniou, M. and Kouimtzis, Th. Assessment of the surface water quality in Northern Greece. Water Res., 2003, 37(17), 4119–4124. 
https://doi.org/10.1016/S0043-1354(03)00398-1

11. Singh, K. P., Malik, A., Mohan, D. and Sinha, S. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India) – a case study. Water Res., 2004, 38(18), 3980–3992. 
https://doi.org/10.1016/j.watres.2004.06.011

12. Belkhiri, L., Boudoukha, A., Mouni, L. and Baouz, T. Appli­cation of multivariate statistical methods and inverse geo­- chemical modeling for characterization of groundwater – A case study: Ain Azel plain (Algeria). Geoderma, 2010, 159 (3–4), 390–398. 
https://doi.org/10.1016/j.geoderma.2010.08.016

13. Tabassum, I. Desertification dynamics and its control mech­anisms in semiarid areas of Pakistan: A case study of District Karak. PhD thesis. Institute of Geography, Urban and Regional Planning, University of Peshawar, Pakistan, 2012.

14. Guidelines for Drinking-Water Quality. 4th edition. WHO, Geneva, 2011. 

15. National Water Quality Monitoring Programme. Pakistan Council of Research in Water Resources (PCRWR), Islamabad, Pakistan, 2007.

16. Hooda, P. S. Trace Elements in Soils. John Wiley & Sons, Hoboken, NJ, 2010.
https://doi.org/10.1002/9781444319477

17. Guidelines for Drinking-Water Quality. WHO, Geneva, 2017.

18. Sharma, D. A., Rishi, M. S. and Keesari, T. Evaluation of groundwater quality and suitability for irrigation and drinking purposes in southwest Punjab, India using hydrochemical approach. Appl. Water Sci., 2017, 7, 3137–3150. 
https://doi.org/10.1007/s13201-016-0456-6

19. Oak, N., Mandalekar, P., Gurav, S., Gokhale, P., Pawar, A. and Kundiya, K. Design and develop water quality monitoring system. Int. Eng. J. Res. Dev., 2020, 5(5), 8. 
https://doi.org/10.17605/OSF.IO/EUQF7

20. Rajendran, A. and Mansiya, C. Physico-chemical analysis of ground water samples of coastal areas of south Chennai in the post-Tsunami scenario. Ecotoxicol. Environ. Saf., 2015, 121, 218–222. 
https://doi.org/10.1016/j.ecoenv.2015.03.037

21. Wang, S.-W., Liu, C.-W. and Jang, C.-S. Factors responsible for high arsenic concentrations in two groundwater catchments in Taiwan. Appl. Geochem., 2007, 22(2), 460–476. 
https://doi.org/10.1016/j.apgeochem.2006.11.011

22. Gibrilla, A., Bam, E. K. P., Adomako, D., Ganyaglo, S., Osae, S., Akiti, T. T. et al. Application of Water Quality Index (WQI) and multivariate analysis for groundwater quality assessment of the Birimian and Cape Coast granitoid complex: Densu River Basin of Ghana. Water Qual. Expo. Health, 2011, 3(63). 
https://doi.org/10.1007/s12403-011-0044-9

23. Tiri, A., Lahbari, N. and Boudoukha, A. Assessment of the quality of water by hierarchical cluster and variance analyses of the Koudiat Medouar Watershed, East Algeria. Appl. Water Sci., 2017, 7, 4197–4206. 
https://doi.org/10.1007/ s13201-014-0261-z

24. Pehme, K.-M., Burlakovs, J., Kriipsalu, M., Pilecka, J., Grinfelde, I., Tamm, T., Jani, Y. and Hogland, W. Urban hydrology research fun­damentals for waste management practices. Rural Environ. Eng., 2019, 1, 160–167. 
https://doi.org/10.22616/rrd.25.2019.024

25. Saaremäe, E., Liira, M., Poolakese, M. and Tamm, T. Removing phosphorus with Ca-Fe oxide granules – a possible wetlands filter material. Hydrol. Res., 2014, 45(3), 368–378. 
https://doi.org/10.2166/nh.2013.101

26. Tamm, T., Nõges, T., Järvet, A. and Bouraoui, F. Contributions of DOC from surface and groundflow into Lake Võrtsjärv (Estonia). Hydrobiologia, 2008, 599, 213–220. 
https://doi.org/10.1007/s10750-007-9189-8

Back to Issue