In this paper we find a sufficient condition for a family of Segal topological algebras to have a coproduct in the category Seg.
1. Abel, M. About some categories of Segal topological algebras. Poincare J. Anal. Appl., 2019, 1, 1–14.
https://doi.org/10.46753/pjaa.2019.v06i01.001
2. Abel, M. Coproducts in the category S (B) of Segal topological algebras, revisited. Period. Math. Hung., 2020, 81(2), 201–216.
https://doi.org/10.1007/s10998-020-00328-z
3. Abel, M. Initial objects, terminal objects, zero objects and equalizers in the category Seg of Segal topological algebras. Proc. Estonian Acad. Sci., 2020, 69(4), 361–367.
https://doi.org/10.3176/proc.2020.4.10
4. Abel, M. Coequalizers and pullbacks in the category Seg of Segal topological algebras. Proc. Estonian Acad. Sci., 2021, 70(2), 155–162.
https://doi.org/10.3176/proc.2021.2.06