ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Effect of temperature on the sensitivity of cascaded lactose biosensors; pp. 306–313
PDF | doi: 10.3176/proc.2012.4.05

Authors
Delia Peedel, Toonika Rinken
Abstract

The sensitivity and application options of cascaded lactose biosensors along with the catalytic activity of three enzymes (β-galactosidase, glucose oxidase, and galactose oxidase) used for bio-recognition in these biosensors were studied at different temperatures ranging from 4 to 38.6 °C, the usual temperature span in the milk processing. Although at 4 °C, which is the common temperature of raw milk storage, the apparent activity of these enzymes was quite low and the resulting biosensor sensitivity decreased nearly 100 times in comparison with its sensitivity at 38.6 °C, it was possible to carry out lactose measurements with a biosensor comprising β-galactosidase and glucose oxidase within 10 min.

References

 

  1. ESA-A Dionex Corporation. 2010.

  2. de Vrese, M., Stegelmann, A., Richter, B., Fenselau, S., Laue, C., and Schrezenmeir, J. Probiotics – compensa­tion for lactase insufficiency. Am. J. Clin. Nutr., 2001, 73, 421S–429S.

  3. Guilbault, G. G., Sadar, M. H., and Peres, K. Fluorometric determination of carbohydrates. Anal. Biochem., 1969, 31, 91–101.
http://dx.doi.org/10.1016/0003-2697(69)90245-0

  4. Karasz, A. B., Gantenbein, W. M., and Bokus, L. Determina­tion of added lactose (nonfat dry milk) in meat products. I. Colorimetric method. J. Assoc. Offic. Anal. Chem., 1971, 54, 1436–1443.

  5. Marier, J. R. and Boulet, M. Direct analysis of lactose in milk and serum. J. Dairy Sci., 1959, 42, 1390–1391.
http://dx.doi.org/10.3168/jds.S0022-0302(59)90747-7

  6. Grimbleby, F. H. The determination of lactose in milk. J. Dairy Res., 1956, 23, 229.
http://dx.doi.org/10.1017/S0022029900008244

  7. DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem., 1956, 28, 350–356.
http://dx.doi.org/10.1021/ac60111a017

  8. Tkac, J., Sturdik, E., and Gemeiner, P. Novel glucose non-interference biosensor for lactose detection based on galactose oxidase–peroxidase with and without co-immobilised [beta]-galactosidase. Analyst, 2000, 125, 1285–1289.
http://dx.doi.org/10.1039/b001432j

  9. Adanyi, N., Szabo, E. E., and Varadi, M. Multi-enzyme biosensors with amperometric detection for determina­tion of lactose in milk and dairy products. Eur. Food Res. Technol., 1999, 209, 220–226.
http://dx.doi.org/10.1007/s002170050484

10. Sezgintürk, M. K. and Dinçkaya, E. [beta]-galactosidase monitoring by a biosensor based on Clark electrode: its optimization, characterization and application. Biosens. Bioelectron., 2008, 23, 1799–1804.
http://dx.doi.org/10.1016/j.bios.2008.02.017

11. Göktug, T., Sezgintürk, M. K., and Dinçkaya, E. Glucose oxidase–[beta]-galactosidase hybrid biosensor based on glassy carbon electrode modified with mercury for lactose determination. Anal. Chim. Acta, 2005, 551, 51–56.
http://dx.doi.org/10.1016/j.aca.2005.07.021

12. Logoglu, E., Sungur, S., and Yildiz, Y. Development of lactose biosensor based on [beta]-galactosidase and glucose oxidase immobilized into gelatin. J. Macro­mol. Sci. A, 2006, 43, 525–533.

13. Ammam, M. and Fransaer, J. Two-enzyme lactose bio­sensor based on [beta]-galactosidase and glucose oxidase deposited by AC-electrophoresis: charac­teristics and performance for lactose determination in milk. Sensor. Actuator. B Chem., 2010, 148, 583–589.

14. Loechel, C., Chemnitius, G. C., Borchardt, M., and Cammann, K. Amperometric bi-enzyme based bio­sensor for the determination of lactose with an extended linear range. Z. Lebensm. Unters. F. A, 1998, 207, 381–385.
http://dx.doi.org/10.1007/s002170050349

15. Sharma, S. K., Singhal, R., Malhotra, B. D., Sehgal, N. and Kumar, A. Lactose biosensor based on Langmuir–Blodgett films of poly(3-hexyl thiophene). Biosens. Bioelectron., 2004, 20, 651–657.
http://dx.doi.org/10.1016/j.bios.2004.03.020

16. Alberton, D., Silva de Oliveira, L., Peralta, R. M., and Barbosa-Tessmann, I. P. Production, purification, and characterization of a novel galactose oxidase from Fusarium acuminatum. J. Basic Microbiol., 2007, 47, 203–212.
http://dx.doi.org/10.1002/jobm.200610290

17. Xu, F., Golightly, E., Schneider, P., Berka, R., Brown, K., Johnstone, J., Baker, D., Fuglsang, C., Brown, S., Svend­sen, A., and Klotz, A. Expression and charac­terization of a recombinant Fusarium spp. galactose oxidase. Biotechnol. Appl. Biochem., 2000, 88, 23–32.
http://dx.doi.org/10.1385/ABAB:88:1-3:023

18. Wimmerova, M. and Macholan, L. Sensitive amperometric biosensor for the determination of biogenic and synthetic amines using pea seedlings amine oxidase: a novel approach for enzyme immobilisation. Biosens. Bioelectron., 1999, 14, 695–702.
http://dx.doi.org/10.1016/S0956-5663(99)00048-2

19. Niculescu, M., Nistor, C., Frébort, I., Peč, P., Mattias­son, B., and Csöregi, E. Redox hydrogel-based ampero­metric bienzyme electrodes for fish freshness monitoring. Anal. Chem., 2000, 72, 1591–1597.
http://dx.doi.org/10.1021/ac990848+

20. Castillo, J., Gaspar, S., Sakharov, I., and Csöregi, E. Bienzyme biosensors for glucose, ethanol and putrescine built on oxidase sweet potato peroxidase. Biosens. Bioelectron., 2003, 18, 705–714.
http://dx.doi.org/10.1016/S0956-5663(03)00011-3

21. Bankar, S. B., Bule, M. V., Singhal, R. S., and Ananthana­rayan, L. Glucose oxidase – an overview. Biotechnol. Adv., 2007, 27, 489–501.
http://dx.doi.org/10.1016/j.biotechadv.2009.04.003

22. Simpson, C., Jordaan, J., Gardiner, N. S., and Whiteley, C. Isolation, purification and characterization of a novel glucose oxidase from Penicillium sp. CBS 120262 optimally active at neutral pH. Prot. Expr. Purif., 2007, 51, 260–266.
http://dx.doi.org/10.1016/j.pep.2006.09.013

23. Cevik, E., Senel, M., and Fatih Abasiyanik, M. Construc­tion of biosensor for determination of galactose with galactose oxidase immobilized on polymeric mediator contains ferrocene. Curr. Appl. Phys., 2010, 10, 1313–1316.
http://dx.doi.org/10.1016/j.cap.2010.03.014

24. Sharma, S. K., Suman, Pundir, C. S., Sehgal, N., and Kumar, A. Galactose sensor based on galactose oxidase immobilized in polyvinyl formal. Sensor. Actuator. B Chem., 2006, 119, 15–19.

25. Baret, J. L. Large-scale production and application of immobilized lactase. Meth. Enzymol., 1987, 136, 411–423.
http://dx.doi.org/10.1016/S0076-6879(87)36040-9

26. Todorova-Balvay, D., Stoilova, I., Gargova, S., and Vijayalakshmi, M. A. An efficient two step purifica­tion and molecular characterization of beta-galactosidases from Aspergillus oryzae. J. Mol. Recognit., 2006, 19, 299–304.
http://dx.doi.org/10.1002/jmr.788

27. Firk, R., Stamer, E., Junge, W., and Krieter, J. Automation of oestrus detection in dairy cows: a review. Livest. Prod. Sci., 2002, 75, 219–232.
http://dx.doi.org/10.1016/S0301-6226(01)00323-2

28. Eshkenazi, I., Maltz, E., Zion, B., and Rishpon, J. A three-cascaded-enzymes biosensor to determine lactose concentration in raw milk. J. Dairy Sci., 2000, 83, 1939–1945.
http://dx.doi.org/10.3168/jds.S0022-0302(00)75069-7

29. Svorc, J., Miertus, S., and Barlikova, A. Hybrid biosensor for the determination of lactose. Anal. Chem., 1990, 62, 1628–1631.
http://dx.doi.org/10.1021/ac00214a018

30. Stoica, L., Ludwig, R., Haltrich, D., and Gorton, L. Third-generation biosensor for lactose based on newly discovered cellobiose dehydrogenase. Anal. Chem., 2005, 78, 393–398.
http://dx.doi.org/10.1021/ac050327o

31. Gao, F. G., Jeevarajan, A. S., and Anderson, M. M. Long-term continuous monitoring of dissolved oxygen in cell culture medium for perfused bioreactors using optical oxygen sensors. Biotechnol. Bioeng., 2004, 86, 425–433.
http://dx.doi.org/10.1002/bit.20010

32. Õige, K., Avarmaa, T., Suisalu, A., and Jaaniso, R. Effect of long-term aging on oxygen sensitivity of luminescent Pd-tetraphenylporphyrin/PMMA films. Sensor. Actuator. B Chem., 2005, 106, 424–430.

33. Tanaka, Y., Kagamiishi, A., Kiuchi, A., and Horiuchi, T. Purification and properties of β-galactosidase from Aspergillus oryzae. J. Biochem., 1975, 77, 241–247.

34. Rinken, T. and Tenno, T. Dynamic model of amperometric biosensors. Characterisation of glucose biosensor output. Biosens. Bioelectron., 2001, 16, 53–59.
http://dx.doi.org/10.1016/S0956-5663(00)00133-0

35. Rinken, T. Determination of kinetic constants and enzyme activity from a biosensor transient signal. Anal. Lett., 2003, 36, 1535–1545.
http://dx.doi.org/10.1081/AL-120021535

36. http://classes.ansci.illinois.edu/ansc438/Milkcompsynth/
milkcomp_lactose.html (visited 03.10.2012).

37. Rinken, T. and Riik, H. Determination of antibiotic residues and their interaction in milk with lactate bio­sensor. J. Biochem. Biophys. Meth., 2006, 66, 13–21.
http://dx.doi.org/10.1016/j.jbbm.2005.04.009

 

Back to Issue