ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Wave propagation in pantographic 2D lattices with internal discontinuities; pp. 325–330
PDF | doi: 10.3176/proc.2015.3S.01

Authors
Angela Madeo, Alessandro Della Corte, Leopoldo Greco, Patrizio Neff
Abstract

In the present paper we consider a 2D pantographic structure composed of two orthogonal families of Euler beams. Pantographic rectangular ‘long’ waveguides are considered in which imposed boundary displacements can induce the onset of travelling (possibly non-linear) waves. We performed numerical simulations concerning a set of dynamically interesting cases. The system undergoes large rotations, which may involve geometrical non-linearities, possibly opening a path to appealing phenomena such as the propagation of solitary waves. Boundary conditions dramatically influence the transmission of the considered waves at discontinuity surfaces. The theoretical study of this kind of objects looks critical, as the concept of pantographic 2D sheets seems to have promising possible applications in a number of fields, e.g. acoustic filters, vascular prostheses, and aeronautic/aerospace panels.

References

 

  1. Alibert, J., Seppecher, P., and dell’Isola, F. Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids, 2003, 8(1), 51–73.
http://dx.doi.org/10.1177/1081286503008001658

  2. Andreaus, U., dell’Isola, F., and Porfiri, M. Piezoelectric passive distributed controllers for beam flexural vibrations. J. Vib. Control, 2004, 10(5), 625–659.
http://dx.doi.org/10.1177/1077546304038224

  3. Andreaus, U., Giorgio, I., and Lekszycki, T. A 2-D continuum model of a mixture of bone tissue and bio-resorbable material for simulating mass density redistribution under load slowly variable in time. Z. angew. Math. Mech., 2014, 94(12), 978–1000.
http://dx.doi.org/10.1002/zamm.201200182

  4. Bersani, A. M., Giorgio, I., and Tomassetti, G. Buckling of an elastic hemispherical shell with an obstacle. Continuum Mech. Therm., 2013, 25(2), 443–467.
http://dx.doi.org/10.1007/s00161-012-0273-6

  5. Bîrsan, M., Altenbach, H., Sadowski, T., Eremeyev, V. A., and Pietras, D. Deformation analysis of functionally graded beams by the direct approach. Compos. Part B-Eng., 2012, 43(3), 1315–1328.
http://dx.doi.org/10.1016/j.compositesb.2011.09.003

  6. Böehmer, C. G., Neff, P., and Seymenoglu, B. Soliton-like solutions based on geometrically nonlinear Cosserat micropolar elasticity. 2015. Preprint arxiv: 1503.08860.

  7. Cao, J., Akkerman, R., Boisse, P., Chen, J., Cheng, H. S., de Graaf, E. F., et al. Characterization of mechanical behavior of woven fabrics: experimental methods and benchmark results. Compos. Part A-Appl. S., 2008, 39(6), 1037–1053.

  8. Carcaterra, A. and Akay, A. Dissipation in a finite-size bath. Phys. Rev. E, 2011, 84, 011121.
http://dx.doi.org/10.1103/PhysRevE.84.011121

  9. Cazzani, A. and Ruge, P. Numerical aspects of coupling strongly frequency-dependent soil-foundation models with structural finite elements in the time-domain. Soil Dyn. Earthq. Eng., 2012, 37, 56–72.
http://dx.doi.org/10.1016/j.soildyn.2012.01.011

10. Cazzani, A., Malagù, M., and Turco, E. Isogeometric analysis of plane-curved beams. Math. Mech. Solids, 2014.
http://dx.doi.org/10.1177/1081286514531265

11. Cuomo, M. and Contrafatto, L. Stress rate formulation for elastoplastic models with internal variables based on augmented Lagrangian regularisation. Int. J. Solids Struct., 2000, 37(29), 3935–3964.
http://dx.doi.org/10.1016/S0020-7683(99)00163-8

12. Cuomo, M. and Ventura, G. Complementary energy approach to contact problems based on consistent augmented Lagrangian formulation. Math. Comput. Model., 1998, 28(4), 185–204.
http://dx.doi.org/10.1016/S0895-7177(98)00117-4

13. Cuomo, M., Contrafatto, L., and Greco, L. A variational model based on isogeometric interpolation for the analysis of cracked bodies. Int. J. Eng. Sci., 2014, 80, 173–188.
http://dx.doi.org/10.1016/j.ijengsci.2014.02.017

14. Del Vescovo, D. and Giorgio, I. Dynamic problems for metamaterials: review of existing models and ideas for further research. Int. J. Eng. Sci., 2014, 80, 153–172.
http://dx.doi.org/10.1016/j.ijengsci.2014.02.022

15. dell’Isola, F. and Steigmann, D. A two-dimensional gradient-elasticity theory for woven fabrics. J. Elasticity, 2014.
http://dx.doi.org/10.1007/s10659-014-9478-1

16. dell’Isola, F., Andreaus, U., and Placidi, L. At the origins and in the vanguard of peri-dynamics, non-local and higher gradient continuum mechanics. An underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids, 2014.
http://dx.doi.org/10.1177/1081286513509811

17. dell’Isola, F., Giorgio, I., and Andreaus, U. Elastic pantographic 2D lattices: a numerical analysis on static response and wave propagation. Proc. Estonian Acad. Sci., 2015, 64, 3, 219–225.
http://dx.doi.org/10.3176/proc.2015.3.03

18. Eremeyev, V. A. and Pietraszkiewicz, W. Phase transitions in thermoelastic and thermoviscoelastic shells. Arch. Mech., 2009, 61(1), 41–67.

19. Eremeyev, V. A. and Zubov, L. M. On the stability of equilibrium of nonlinear elastic bodies with phase transformations. Proc. USSR Academy of Science. Mech. Solids, 1991, 2, 56–65.

20. Fornberg, B. A Practical Guide to Pseudospectral Methods. Cambridge University Press, Cambridge, 1998.

21. Garusi, E., Tralli, A., and Cazzani, A. An unsymmetric stress formulation for Reissner–Mindlin plates: a simple and locking-free rectangular element. Int. J. Comp. Eng. Sci., 2004, 5(3), 589–618.
http://dx.doi.org/10.1142/S1465876304002587

22. Giorgio, I., Culla, A., and Del Vescovo, D. Multimode vibration control using several piezoelectric transducers shunted with a multiterminal network. Arch. Appl. Mech., 2009, 79, 859–879.
http://dx.doi.org/10.1007/s00419-008-0258-x

23. Javili, A., dell’Isola, F., and Steinmann, P. Geometrically nonlinear higher-gradient elasticity with energetic boundaries. J. Mech. Phys. Solids, 2013, 61(12), 2381–2401.
http://dx.doi.org/10.1016/j.jmps.2013.06.005

24. Lekszycki, T. and dell’Isola, F. A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials. Z. angew. Math. Mech., 2012, 92(6), 426–444.
http://dx.doi.org/10.1002/zamm.201100082

25. Luongo, A. and Piccardo, G. Linear instability mechanisms for coupled translational galloping. J. Sound Vib., 2005, 288(4), 1027–1047.
http://dx.doi.org/10.1016/j.jsv.2005.01.056

26. Luongo, A., Paolone, A., and Piccardo, G. Postcritical behavior of cables undergoing two simultaneous galloping modes. Meccanica, 1998, 33(3), 229–242.
http://dx.doi.org/10.1023/A:1004343029604

27. Luongo, A., Zulli, D., and Piccardo, G. A linear curved-beam model for the analysis of galloping in suspended cables. J. Mech. Mater. Struct., 2007, 2(4), 675–694.
http://dx.doi.org/10.2140/jomms.2007.2.675

28. Maugin, G. A. Solitons in elastic solids (1938–2010). Mech. Res. Commun., 2011, 38(5), 341–349.
http://dx.doi.org/10.1016/j.mechrescom.2011.04.009

29. Maurini, C., Pouget, J., and dell’Isola, F. On a model of layered piezoelectric beams including transverse stress effect. Internat. J. Solids Structures, 2004, 41(16–17), 4473–4502.
http://dx.doi.org/10.1016/j.ijsolstr.2004.03.002

30. Nahine, H. and Boisse, P. Tension locking in finite-element analyses of textile composite reinforcement deformation. C.R. Acad. Sci., Ser. IIb: Mec., Phys., 2013, 341(6), 508–519.

31. Piccardo, G., Pagnini, L. C., and Tubino, F. Some research perspectives in galloping phenomena: critical conditions and post-critical behavior. Continuum Mech. Therm., 2015, 27(1–2), 261–285.
http://dx.doi.org/10.1007/s00161-014-0374-5

32. Pietraszkiewicz, W., Eremeyev, V., and Konopinska, V. Extended non-linear relations of elastic shells undergoing phase transitions. Z. angew. Math. Mech., 2007, 87(2), 150–159.
http://dx.doi.org/10.1002/zamm.200610309

33. Placidi, L. and Hutter, K. An anisotropic flow law for incompressible polycrystalline materials. Z. angew. Math. Phys., 2005, 57(1), 160–181.
http://dx.doi.org/10.1007/s00033-005-0008-7

34. Placidi, L., dell’Isola, F., Ianiro, N., and Sciarra, G. Variational formulation of pre-stressed solid–fluid mixture theory, with an application to wave phenomena. Eur. J. Mech. A Solids, 2008, 27(4), 582–606.
http://dx.doi.org/10.1016/j.euromechsol.2007.10.003

35. Quiligotti, S., Maugin, G. A., and dell’Isola, F. Wave motions in unbounded poroelastic solids infused with compressible fluids. Z. angew. Math. Phys., 2002, 53(6), 1110–1113.
http://dx.doi.org/10.1007/PL00012616

36. Rinaldi, A. and Placidi, L. A microscale second gradient approximation of the damage parameter of quasi-brittle heterogeneous lattices. Z. angew. Math. Mech., 2014, 94(10), 862–877.
http://dx.doi.org/10.1002/zamm.201300028

37. Salupere, A. The pseudospectral method and discrete spectral analysis. In Applied Wave Mathematics: Selected Topics in Solids, Fluids, and Mathematical Methods (Quak, E. and Soomere, T., eds). Springer, Berlin, 2009, 301–333.
http://dx.doi.org/10.1007/978-3-642-00585-5_16

38. Salupere, A. and Engelbrecht, J. Hidden and driven solitons in microstructured media. In 21st International Congress of Theoretical and Applied Mechanics, August 15–21, 2004, Warsaw, Poland, ICTAM04 Abstracts and CD-ROM Proceedings. IPPT PAN, Warsaw, 2004 [1–2].

39. Seppecher, P., Alibert, J.-J., and dell’Isola, F. Linear elastic trusses leading to continua with exotic mechanical interactions. J. Phys. Conf. Ser., 2011, 319(1), 012018.
http://dx.doi.org/10.1088/1742-6596/319/1/012018

40. Sestieri, A. and Carcaterra, A. Space average and wave interference in vibration conductivity. J. Sound Vib., 2003, 263(3), 475–491.
http://dx.doi.org/10.1016/S0022-460X(02)01060-X

41. Tarantino, G. Esempi di utilizzo di differenti ambienti di modellizzazione per lo studio delle onde meccaniche. Quaderni di Ricerca in Didattica (Science), 2010, No. 1, 37–48.

42. Yang, Y. and Misra, A. Higher-order stress-strain theory for damage modeling implemented in an element-free Galerkin formulation. Comput. Model. Eng. Sci., 2010, 64, 1–36.

43. Yang, Y., Ching, W. Y., and Misra, A. Higher-order continuum theory applied to fracture simulation of nano-scale intergranular glassy film. J. Nanomech. Micromech., 2011, 1, 60–71.
http://dx.doi.org/10.1061/(ASCE)NM.2153-5477.0000030

44. Yeremeyev, V. A., Freidin, A. B., and Sharipova, L. L. Non-uniqueness and stability in problems of the equilibrium of elastic two-phase solids. Dokl. Ross. Akad. Nauk, 2003, 391(2), 189–193.

45. Zabusky, N. J. and Kruskal, M. D. Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett., 1965, 15, 240–243.
http://dx.doi.org/10.1103/PhysRevLett.15.240

 

Back to Issue