ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Wave nature in deformation of solids and comprehensive description of deformation dynamics; pp. 438–448
PDF | doi: 10.3176/proc.2015.3S.15

Author
Sanichiro Yoshida
Abstract

Deformation of solids is discussed based on a recent field theory. Applying the basic physical principle, known as local symmetry, to the elastic force law, this theory derives field equations that govern dynamics of all stages of deformation on the same theoretical basis. The general solutions to the field equations are wave functions. Different stages of deformation are characterized by different restoring mechanisms that generate the wave characteristics. Elastic deformation is characterized by longitudinal restoring force, plastic deformation is characterized by transverse restoring force accompanied by longitudinal energy dissipative force. Fracture is characterized by the final stage of plastic deformation where the solid has lost both restoring and energy dissipative mechanisms. Experimental observations that support these wave dynamics are presented.

References

 

  1. Yoshida, S. Deformation and Fracture of Solid-State Materials. Springer, New York, Heidelberg, London, 2015.
http://dx.doi.org/10.1007/978-1-4939-2098-3

  2. Yoshida, S. Scale-independent approach to deformation and fracture of solid-state materials. J. Strain Anal., 2011, 46, 380–388.
http://dx.doi.org/10.1177/0309324711404788

  3. Yoshida, S. Dynamics of plastic deformation based on restoring and energy dissipative mechanism in plasticity. Phys. Mesomech., 2008, 11(3–4), 140–146.
http://dx.doi.org/10.1016/j.physme.2008.07.003

  4. Yoshida, S., Widiastuti, R., Pardede, M., Hutagalung, S., Marpaung, J. S., Muhardy, A. F., and Kusnowo, A. Direct observation of developed plastic deformation and its application to nondestructive testing. Jpn J. Appl. Phys., 1996, 35, L854–L857.
http://dx.doi.org/10.1143/JJAP.35.L854

  5. Yoshida, S. and Toyooka, S. Field theoretical interpretation of dynamics of plastic deformation – Portevin-Le Chatelie effect and propagation of shear band. J. Phys. Condens. Matter, 2001, 13(31), 6741–6757.
http://dx.doi.org/10.1088/0953-8984/13/31/312

  6. Yoshida, S., Ishii, H., Ichinose, K., Gomi, K., and Taniuchi, K. An optical interferometric band of an indicator of plastic deformation front. J. Appl. Mech., 2005, 72(5), 792–794.
http://dx.doi.org/10.1115/1.1985431

  7. Suzuki, T., Takeuchi, S., and Yoshinaga, H. Dislocation Dynamics and Plasticity. Springer, Berlin, New York, Tokyo, 1991.
http://dx.doi.org/10.1007/978-3-642-75774-7

  8. Yoshida, S. and Sasaki, T. Field theoretical description of shear bands. Soc. Exp. Mech. Annual Meeting, June 8–11, 2015, Costa Mesa, CA, USA.

  9. Yoshida, S., Siahaan, B., Pardede, M. H., Sijabat, N., Simangunsong, H., Simbolon, T., and Kusnowo, A. Observation of plastic deformation wave in a tensile-loaded aluminum-alloy. Phys. Lett. A, 1999, 251(1), 54–60.
http://dx.doi.org/10.1016/S0375-9601(98)00852-4

10. Maugin, G. A. Solitons in elastic solids (1938–2010). Mech. Res. Commun., 2011, 38(5), 341–349.
http://dx.doi.org/10.1016/j.mechrescom.2011.04.009

11. Yoshida, S. Optical interferometric study on deformation and fracture based on physical mesomechanics. Phys. Mesomech., 1999, 2(4), 5–12.

 

Back to Issue