This paper presents the mission analysis, requirements, system design, system level test results, as well as mass and power budgets of a 1-unit CubeSat ESTCube-1 built to perform the first in-orbit demonstration of electric solar wind sail (E-sail) technology. The E-sail is a propellantless propulsion system concept that uses thin charged electrostatic tethers for turning the momentum flux of a natural plasma stream, such as the solar wind, into spacecraft propulsion. ESTCube-1 will deploy and charge a 10 m long tether and measure changes in the satellite spin rate. These changes result from the Coulomb drag interaction with the ionospheric plasma that is moving with respect to the satellite due to the orbital motion of the satellite. The following subsystems have been developed to perform and to support the E-sail experiment: a tether deployment subsystem based on a piezoelectric motor; an attitude determination and control subsystem to provide the centrifugal force for tether deployment, which uses electromagnetic coils to spin up the satellite to one revolution per second with controlled spin axis alignment; an imaging subsystem to verify tether deployment, which is based on a 640 ´ 480 pixel resolution digital image sensor; an electron gun to keep the tether at a high positive potential; a high voltage source to charge the tether; a command and data handling subsystem; and an electrical power subsystem with high levels of redundancy and fault tolerance to mitigate the risk of mission failure.
1. Johnson, L., Young, R., Barnes, N., Friedman, L., Lappas, V., and McInnes, C. Solar sails: technology and demonstration status. Int’l J. Aeronaut. Space Sci., 2012, 13(4), 421–427.
2. Ansdell, M., Ehrenfreund, P., and McKay, C. Stepping stones toward global space exploration. Acta Astronaut., 2011, 68(11–12), 2098–2113.
http://dx.doi.org/10.1016/j.actaastro.2010.10.025
3. Macdonald, M. and McInnes, C. Solar sail science mission applications and advancement. Adv. Space Res., 2011, 48, 1702–1716.
http://dx.doi.org/10.1016/j.asr.2011.03.018
4. Zubrin, R. M. and Andrews, D. G. Magnetic sails and interplanetary travel. J. Spacecr. Rockets, 1991, 28, 197–203.
http://dx.doi.org/10.2514/3.26230
5. Janhunen, P. Electric sail for spacecraft propulsion. J. Propul. Power, 2004, 20, 763–764.
http://dx.doi.org/10.2514/1.8580
6. Janhunen, P. and Sandroos, A. Simulation study of solar wind push on a charged wire: basis of solar wind electric sail propulsion. Ann. Geophys., 2007, 25, 755–767.
http://dx.doi.org/10.5194/angeo-25-755-2007
7. Janhunen, P. Increased electric sail thrust through removal of trapped shielding electrons by orbit chaotisation due to spacecraft body. Ann. Geophys., 2009, 27, 3089–3100.
http://dx.doi.org/10.5194/angeo-27-3089-2009
8. Janhunen, P., Toivanen, P. K., Polkko, J., Merikallio, S., Salminen, P., Hæggström, E. et al. Electric solar wind sail: toward test missions. Rev. Sci. Instrum., 2010, 81, 111301:1–11.
9. Janhunen, P., Toivanen, P., Envall, J., Merikallio, S., Montesanti, G., del Amo, J. G. et al. Overview of electric solar wind sail applications. Proc. Estonian Acad. Sci., 2014, 63(2S), 267–278.
10. Seppänen, H., Kiprich, S., Kurppa, R., Janhunen, P., and Hæggström, E.Wire-to-wire bonding of μm-diameter aluminum wires for the Electric Solar Wind Sail. Microelectron. Eng., 2011, 88, 3267–3269.
http://dx.doi.org/10.1016/j.mee.2011.07.002
11. Seppänen, H., Rauhala, T., Kiprich, S., Ukkonen, J., Simonsson, M., Kurppa, R. et al. One kilometer (1 km) electric solar wind sail tether produced automatically. Rev. Sci. Instrum., 2013, 84, 095102:1–4.
12. Envall, J., Janhunen, P., Toivanen, P., Pajusalu, M., Ilbis, E., Kalde, J. et al. E-sail test payload of the ESTCube-1 nanosatellite. Proc. Estonian Acad. Sci., 2014, 63(2S), 210–221.
13. Slavinskis, A., Kvell, U., Kulu, E., Sünter, I., Kuuste, H., Lätt, S. et al. High spin rate magnetic controller for nanosatellites. Acta Astronaut., 2014, 95, 218–226.
http://dx.doi.org/10.1016/j.actaastro.2013.11.014
14. Slavinskis, A., Kulu, E., Viru, J., Valner, R., Ehrpais, H., Uiboupin, T. et al. Attitude determination and control for centrifugal tether deployment on the ESTCube-1 nanosatellite. Proc. Estonian Acad. Sci., 2014, 63(2S), 242–249.
15. Kuuste, H., Eenmäe, T., Allik, V., Agu, A., Vendt, R., Ansko, I. et al. Imaging system for nanosatellite proximity operations. Proc. Estonian Acad. Sci., 2014, 63(2S), 250–257.
16. CubeSat Design Specification Rev. 12. The CubeSat Program, Cal Poly SLO, California, 2009.
17. Laizans, K., Sünter, I., Zalite, K., Kuuste, H., Valgur, M., Tarbe, K. et al. Design of the fault tolerant command and data handling subsystem for ESTCube-1. Proc. Estonian Acad. Sci., 2014, 63(2S), 222–231.
18. Pajusalu, M., Rantsus, R., Pelakauskas, M., Leitu, A., Ilbis, E., Kalde, J. et al. Design of the Electrical Power System for the ESTCube-1 satellite. Latv. J. Phys. Tech. Sci., 2012, 49(3), 16–24.
19. Pajusalu, M., Ilbis, E., Ilves, T., Veske, M., Kalde, J., Lillmaa, H. et al. Design and pre-flight testing of the electrical power system for the ESTCube-1 nanosatellite. Proc. Estonian Acad. Sci., 2014, 63(2S), 232–241.
20. Janhunen, P. Electrostatic plasma brake for deorbiting a satellite. J. Propul. Power, 2010, 26, 370–372.
http://dx.doi.org/10.2514/1.47537
21. Kvell, U., Cara, D. D., Janhunen, P., Noorma, M., and del Amo, J. G. Deorbiting strategies: comparison between electrostatic plasma brake and conventional propulsion. In Joint Propulsion Conferences. 2011, 1–9.
22. Khurshid, O., Tikka, T., Praks, J., and Hallikainen, M. Accommodating the plasma brake experiment onboard the Aalto-1 satellite. Proc. Estonian Acad. Sci., 2014, 63(2S), 258–266.
23. ISIS. ISIPOD CubeSat Deployer Product Specification.
24. Stras, L., Kekez, D. D., Wells, G. J., Jeans, T., Zee, R. E., Pranajaya, F. et al. The design and operation of the Canadian Advanced Nanospace eXperiment (CanX-1). In Proceedings of the AMSAT-NA 21st Space Symposium. 2003, 150–160.
25. Díaz-Michelena, M. Small magnetic sensors for space applications. Sensors, 2009, 9, 2271–2288.
http://dx.doi.org/10.3390/s90402271
26. Avery, K., Fenchel, J., Mee, J., Kemp, W., Netzer, R., Elkins, D. et al. Total dose test results for CubeSat electronics. In IEEE Radiation Effects Data Workshop. 2011.
27. Pajusalu, M., Ilbis, E., Kalde, J., Lillmaa, H., Reinumägi, R., Rantsus, R. et al. Electrical power system for ESTCube-1: a fault-tolerant COTS solution. In 63rd International Astronautical Congress. Naples, 2012, 7139–7144.
28. Arianespace. Vega User’s Manual. Issue 3/Revision 0. 2006.
29. Jonsson, M. Development of a Shock Test Facility for Qualification of Space Equipment. Master thesis. Chalmers University of Technology, 2012.